首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Dna2 protein is a multifunctional enzyme with 5'-3' DNA helicase, DNA-dependent ATPase, 3' exo/endonuclease, and 5' exo/endonuclease. The enzyme is highly specific for structures containing single-stranded flaps adjacent to duplex regions. We report here two novel activities of both the yeast and human Dna2 helicase/nuclease protein: single strand annealing and ATP-independent strand exchange on short duplexes. These activities are independent of ATPase/helicase and nuclease activities in that mutations eliminating either nuclease or ATPase/helicase do not inhibit strand annealing or strand exchange. ATP inhibits strand exchange. A model rationalizing the multiple catalytic functions of Dna2 and leading to its coordination with other enzymes in processing single-stranded flaps during DNA replication and repair is presented.  相似文献   

2.
The repair of some types of DNA double-strand breaks is thought to proceed through DNA flap structure intermediates. A DNA flap is a bifurcated structure composed of double-stranded DNA and a displaced single-strand. To identify DNA flap cleaving activities in mammalian nuclear extracts, we created an assay utilizing a synthetic DNA flap substrate. This assay has allowed the first purification of a mammalian DNA structure-specific nuclease. The enzyme described here, flap endonuclease-1 (FEN-1), cleaves DNA flap strands that terminate with a 5' single-stranded end. As expected for an enzyme which functions in double-strand break repair flap resolution, FEN-1 cleavage is flap strand-specific and independent of flap strand length. Furthermore, efficient flap cleavage requires the presence of the entire flap structure. Substrates missing one strand are not cleaved by FEN-1. Other branch structures, including Holliday junctions, are also not cleaved by FEN-1. In addition to endonuclease activity, FEN-1 has a 5'-3' exonuclease activity which is specific for double-stranded DNA. The endo- and exonuclease activities of FEN-1 are discussed in the context of DNA replication, recombination and repair.  相似文献   

3.
The RAD2 family of nucleases includes human XPG (Class I), FEN1 (Class II), and HEX1/hEXO1 (Class III) products gene. These proteins exhibit a blend of substrate specific exo- and endonuclease activities and contribute to repair, recombination, and/or replication. To date, the substrate preferences of the EXO1-like Class III proteins have not been thoroughly defined. We report here that the RAD2 domain of human exonuclease 1 (HEX1-N2) exhibits both a robust 5' to 3' exonuclease activity on single- and double-stranded DNA substrates as well as a flap structure-specific endonuclease activity but does not show specific endonuclease activity at 10-base pair bubble-like structures, G:T mismatches, or uracil residues. Both the 5' to 3' exonuclease and flap endonuclease activities require a divalent metal cofactor, with Mg(2+) being the preferred metal ion. HEX1-N2 is approximately 3-fold less active in Mn(2+)-containing buffers and exhibits <5% activity in the presence of Co(2+), Zn(2+), or Ca(2+). The optimal pH range for the nuclease activities of HEX1-N2 is 7.2-8.2. The specific activity of its 5' to 3' exonuclease function is 2.5-7-fold higher on blunt end and 5'-recessed double-stranded DNA substrates compared with duplex 5'-overhang or single-stranded DNAs. The flap endonuclease activity of HEX1-N2 is similar to that of human flap endonuclease-1, both in terms of turnover efficiency (k(cat)) and site of incision, and is as efficient (k(cat)/K(m)) as its exonuclease function. The nuclease activities of HEX1-N2 described here indicate functions for the EXO1-like proteins in replication, repair, and/or recombination that may overlap with human flap endonuclease-1.  相似文献   

4.
5.
X Wu  J Li  X Li  C L Hsieh  P M Burgers    M R Lieber 《Nucleic acids research》1996,24(11):2036-2043
In eukaryotic cells, a 5' flap DNA endonuclease activity and a ds DNA 5'-exonuclease activity exist within a single enzyme called FEN-1 [flap endo-nuclease and 5(five)'-exo-nuclease]. This 42 kDa endo-/exonuclease, FEN-1, is highly homologous to human XP-G, Saccharomyces cerevisiae RAD2 and S.cerevisiae RTH1. These structure-specific nucleases recognize and cleave a branched DNA structure called a DNA flap, and its derivative called a pseudo Y-structure. FEN-1 is essential for lagging strand DNA synthesis in Okazaki fragment joining. FEN-1 also appears to be important in mismatch repair. Here we find that human PCNA, the processivity factor for eukaryotic polymerases, physically associates with human FEN-1 and stimulates its endonucleolytic activity at branched DNA structures and its exonucleolytic activity at nick and gap structures. Structural requirements for FEN-1 and PCNA loading provide an interesting picture of this stimulation. PCNA loads on to substrates at double-stranded DNA ends. In contrast, FEN-1 requires a free single-stranded 5' terminus and appears to load by tracking along the single-stranded DNA branch. These physical constraints define the range of DNA replication, recombination and repair processes in which this family of structure-specific nucleases participate. A model explaining the exonucleolytic activity of FEN-1 in terms of its endonucleolytic activity is proposed based on these observations.  相似文献   

6.
Flap endonuclease 1 (FEN1) and Dna2 endonuclease/helicase (Dna2) sequentially coordinate their nuclease activities for efficient resolution of flap structures that are created during the maturation of Okazaki fragments and repair of DNA damage. Acetylation of FEN1 by p300 inhibits its endonuclease activity, impairing flap cleavage, a seemingly undesirable effect. We now show that p300 also acetylates Dna2, stimulating its 5′–3′ endonuclease, the 5′–3′ helicase, and DNA-dependent ATPase activities. Furthermore, acetylated Dna2 binds its DNA substrates with higher affinity. Differential regulation of the activities of the two endonucleases by p300 indicates a mechanism in which the acetylase promotes formation of longer flaps in the cell at the same time as ensuring correct processing. Intentional formation of longer flaps mediated by p300 in an active chromatin environment would increase the resynthesis patch size, providing increased opportunity for incorrect nucleotide removal during DNA replication and damaged nucleotide removal during DNA repair. For example, altering the ratio between short and long flap Okazaki fragment processing would be a mechanism for better correction of the error-prone synthesis catalyzed by DNA polymerase α.  相似文献   

7.
The flap endonuclease gene homologue from the hyperthermophilic archaeon, Pyrococcus horikoshii, was overexpressed in Escherichia coli and purified. The results of gel filtration indicated that this protein was a 41-kDa monomer. P. horikoshii flap endonuclease (phFEN) cleaves replication fork-like substrates (RF) and 5' double-strand flap structures (DF) using both flap endonuclease and 5'-3'-exonuclease activities. The mammalian flap endonuclease (mFEN) is a single-strand flap-specific endonuclease (Harrington, J. J., and Lieber, M. R. (1994) EMBO J. 13, 1235-1246), but the action patterns of phFEN appear to be quite different from those of mFEN at this point. The DF-specific flap endonuclease and 5'-exonuclease activities have not yet been reported. Therefore, this is the first report of the specific endo/exonuclease activities of phFEN. The DF-specific 5'-exonuclease activity degraded the downstream primer of 3' single-flap structure and was 15 times higher than the activities against nicked substrates without 3' flap strand. DF-specific flap endonuclease cleaved the 5' double-flap strand in DF and the lagging strand in RF at the junction portion. Because the RF appears to be the intermediate structure, due to the arrest of the replication fork, the double strand breaks after the arrests of the replication forks are probably caused by phFEN.  相似文献   

8.
9.
The Saccharomyces cerevisiae Dna2, which contains single-stranded DNA-specific endonuclease activity, interacts genetically and physically with Fen-1, a structure-specific endonuclease implicated in Okazaki fragment maturation during lagging strand synthesis. In this report, we investigated the properties of the Dna2 helicase/endonuclease activities in search of their in vivo physiological functions in eukaryotes. We found that the Dna2 helicase activity translocates in the 5' to 3' direction and uses DNA with free ends as the preferred substrate. Furthermore, the endonucleolytic cleavage activity of Dna2 was markedly stimulated by the presence of an RNA segment at the 5'-end of single-stranded DNA and occurred within the DNA, ensuring the complete removal of the initiator RNA segment on the Okazaki fragment. In addition, we demonstrated that the removal of pre-existing initiator 5'-terminal RNA segments depended on a displacement reaction carried out during the DNA polymerase delta-catalyzed elongation of the upstream Okazaki fragments. These properties indicate that Dna2 is well suited to remove the primer RNA on the Okazaki fragment. Based op this information, we propose a new model in which Dna2 plays a direct role in Okazaki fragment maturation in conjunction with Fen-1.  相似文献   

10.
The structure-specific ChSI nuclease from wheat (Triticum vulgare) chloroplast stroma has been previously purified and characterized in our laboratory. It is a single-strand-specific DNA and RNA endonuclease. Although the enzyme has been initially characterized and used as a structural probe, its biological function is still unknown. Localization of the ChSI enzyme inside chloroplasts, possessing their own DNA that is generally highly exposed to UV light and often affected by numerous redox reactions and electron transfer processes, might suggest, however, that this enzyme could be involved in DNA repair. The repair of some types of DNA damage has been shown to proceed through branched DNA intermediates which are substrates for the structure-specific DNA endonucleases. Thus we tested the substrate specificity of ChSI endonuclease toward various branched DNAs containing 5' flap, 5' pseudoflap, 3' pseudoflap, or single-stranded bulged structural motifs. It appears that ChSI has a high 5' flap structure-specific endonucleolytic activity. The catalytic efficiency (k(cat)/K(M)) of the enzyme is significantly higher for the 5' flap substrate than for single-stranded DNA. The ChSI 5' flap activity was inhibited by high concentrations of Mg(2+), Mn(2+), Zn(2+), or Ca(2+). However, low concentrations of divalent cations could restore the loss of ChSI activity as a consequence of EDTA pretreatment. In contrast to other known 5' flap nucleases, the chloroplast enzyme ChSI does not possess any 5'-->3' exonuclease activity on double-stranded DNA. Therefore, we conclude that ChSI is a 5' flap structure-specific endonuclease with nucleolytic activity toward single-stranded substrates.  相似文献   

11.
Eukaryotic Okazaki fragments are initiated by a RNA/DNA primer, which is removed before the fragments are joined. Polymerase delta displaces the primer into a flap for processing. Dna2 nuclease/helicase and flap endonuclease 1 (FEN1) are proposed to cleave the flap. The single-stranded DNA-binding protein, replication protein A (RPA), governs cleavage activity. Flap-bound RPA inhibits FEN1. This necessitates cleavage by Dna2, which is stimulated by RPA. FEN1 then cuts the remaining RPA-free flap to create a nick for ligation. Cleavage by Dna2 requires that it enter the 5'-end and track down the flap. Because Dna2 cleaves the RPA-bound flap, we investigated the mechanism by which Dna2 accesses the protein-coated flap for cleavage. Using a nuclease-defective Dna2 mutant, we showed that just binding of Dna2 dissociates the flap-bound RPA. Facile dissociation is specific to substrates with a genuine flap, and will not occur with an RPA-coated single strand. We also compared the cleavage patterns of Dna2 with and without RPA to better define RPA stimulation of Dna2. Stimulation derived from removal of DNA folding in the flap. Apparently, coordinated with its dissociation, RPA relinquishes the flap to Dna2 for tracking in a way that does not allow flap structure to reform. We also found that RPA strand melting activity promotes excessive flap elongation, but it is suppressed by Dna2-promoted RPA dissociation. Overall, results indicate that Dna2 and RPA coordinate their functions for efficient flap cleavage and preparation for FEN1.  相似文献   

12.
During DNA replication, synthesis of the lagging strand occurs in stretches termed Okazaki fragments. Before adjacent fragments are ligated, any flaps resulting from the displacement of the 5′ DNA end of the Okazaki fragment must be cleaved. Previously, Dna2 was implicated to function upstream of flap endonuclease 1 (Fen1 or Rad27) in the processing of long flaps bound by the replication protein A (RPA). Here we show that Dna2 efficiently cleaves long DNA flaps exactly at or directly adjacent to the base. A fraction of the flaps cleaved by Dna2 can be immediately ligated. When coupled with DNA replication, the flap processing activity of Dna2 leads to a nearly complete Okazaki fragment maturation at sub-nanomolar Dna2 concentrations. Our results indicate that a subsequent nucleolytic activity of Fen1 is not required in most cases. In contrast Dna2 is completely incapable to cleave short flaps. We show that also Dna2, like Fen1, interacts with proliferating cell nuclear antigen (PCNA). We propose a model where Dna2 alone is responsible for cleaving of RPA-bound long flaps, while Fen1 or exonuclease 1 (Exo1) cleave short flaps. Our results argue that Dna2 can function in a separate, rather than in a Fen1-dependent pathway.  相似文献   

13.
Dna2 protein plays an important role in Okazaki fragment maturation on the lagging strand and also participates in DNA repair in Eukarya. Herein, we report the first biochemical characterization of a Dna2 homologue from Archaea, the hyperthermophile Pyrococcus horikoshii (Dna2Pho). Dna2Pho has both a RecB-like nuclease motif and seven conserved helicase motifs similar to Dna2 from Saccharomyces cerevisiae. Dna2Pho has single-stranded (ss) DNA-stimulated ATPase activity, DNA helicase activity (5' to 3' direction) requiring ATP, and nuclease activity, which prefers free 5'-ends of ssDNA as substrate. These activities depend on MgCl(2) concentrations. Dna2Pho requires a higher concentration of MgCl(2) for the nuclease than helicase activity. Both the helicase and nuclease activities of Dna2Pho were inhibited by substrates with RNA segments at the 5'-end of flap DNA, whereas the nuclease activity of Dna2 from S. cerevisiae was reported to be stimulated by RNA segments in the 5'-tail (Bae, S.-H., and Seo, Y. S. (2000) J. Biol. Chem. 38022-38031).  相似文献   

14.
Dna2 is a nuclease/helicase with proposed roles in DNA replication, double-strand break repair and telomere maintenance. For each role Dna2 is proposed to process DNA substrates with a 5′-flap. To date, however, Dna2 has not revealed a preference for binding or cleavage of flaps over single-stranded DNA. Using DNA binding competition assays we found that Dna2 has substrate structure specificity. The nuclease displayed a strong preference for binding substrates with a 5′-flap or some variations of flap structure. Further analysis revealed that Dna2 recognized and bound both the single-stranded flap and portions of the duplex region immediately downstream of the flap. A model is proposed in which Dna2 first binds to a flap base, and then the flap threads through the protein with periodic cleavage, to a terminal flap length of ∼5 nt. This resembles the mechanism of flap endonuclease 1, consistent with cooperation of these two proteins in flap processing.  相似文献   

15.
Saccharomyces cerevisiae Dna2 possesses both helicase and endonuclease activities. Its endonuclease activity is essential and well suited to remove RNA-DNA primers of Okazaki fragments. In contrast, its helicase activity, although required for optimal growth, is not essential when the rate of cell growth is reduced. These findings suggest that DNA unwinding activity of Dna2 plays an auxiliary role in Okazaki fragment processing. To address this issue, we examined whether the Dna2 helicase activity influenced its intrinsic endonuclease activity using two mutant proteins, Dna2D657A and Dna2K1080E, which contain only helicase or endonuclease activity, respectively. Experiments performed with a mixture of Dna2D657A and Dna2K1080E enzymes revealed that cleavage of a single-stranded DNA by endonuclease activity of Dna2 occurs while the enzyme translocates along the substrate. In addition, DNA unwinding activity efficiently removed the secondary structure formed in the flap structure, which was further aided by replication protein A. Our results suggest that the Dna2 unwinding activity plays a role in facilitating the removal of the flap DNA by its intrinsic endonuclease activity.  相似文献   

16.
The polyguanine-rich DNA sequences commonly found at telomeres and in rDNA arrays have been shown to assemble into structures known as G quadruplexes, or G4 DNA, stabilized by base-stacked G quartets, an arrangement of four hydrogen-bonded guanines. G4 DNA structures are resistant to the many helicases and nucleases that process intermediates arising in the course of DNA replication and repair. The lagging strand DNA replication protein, Dna2, has demonstrated a unique localization to telomeres and a role in de novo telomere biogenesis, prompting us to study the activities of Dna2 on G4 DNA-containing substrates. We find that yeast Dna2 binds with 25-fold higher affinity to G4 DNA formed from yeast telomere repeats than to single-stranded DNA of the same sequence. Human Dna2 also binds G4 DNAs. The helicase activities of both yeast and human Dna2 are effective in unwinding G4 DNAs. On the other hand, the nuclease activities of both yeast and human Dna2 are attenuated by the formation of G4 DNA, with the extent of inhibition depending on the topology of the G4 structure. This inhibition can be overcome by replication protein A. Replication protein A is known to stimulate the 5'- to 3'-nuclease activity of Dna2; however, we go on to show that this same protein inhibits the 3'- to 5'-exo/endonuclease activity of Dna2. These observations are discussed in terms of possible roles for Dna2 in resolving G4 secondary structures that arise during Okazaki fragment processing and telomere lengthening.  相似文献   

17.
Flap endonucleases remove flap structures generated during DNA replication. Gene 6 protein of bacteriophage T7 is a 5′–3′-exonuclease specific for dsDNA. Here we show that gene 6 protein also possesses a structure-specific endonuclease activity similar to known flap endonucleases. The flap endonuclease activity is less active relative to its exonuclease activity. The major cleavage by the endonuclease activity occurs at a position one nucleotide into the duplex region adjacent to a dsDNA-ssDNA junction. The efficiency of cleavage of the flap decreases with increasing length of the 5′-overhang. A 3′-single-stranded tail arising from the same end of the duplex as the 5′-tail inhibits gene 6 protein flap endonuclease activity. The released flap is not degraded further, but the exonuclease activity then proceeds to hydrolyze the 5′-terminal strand of the duplex. T7 gene 2.5 single-stranded DNA-binding protein stimulates the exonuclease and also the endonuclease activity. This stimulation is attributed to a specific interaction between the two proteins because Escherichia coli single-stranded DNA binding protein does not produce this stimulatory effect. The ability of gene 6 protein to remove 5′-terminal overhangs as well as to remove nucleotides from the 5′-termini enables it to effectively process the 5′-termini of Okazaki fragments before they are ligated.  相似文献   

18.
19.
Endonuclease IV has AP endonuclease and 3'-repair diesterase activities. Here, we report Chlamydophila pneumoniae endonuclease IV (CpEndoIV) could hydrolyze the ds DNA and the RNA strand of RNA/DNA hybrid from the 3' end, yet the DNA strand of RNA/DNA hybrid was not the effective substrate of CpEndoIV. The optimal pH for 3' exonuclease on double-stranded (ds) DNA and RNA/DNA hybrids were both basic, but with some difference. The effect of divalent ions (Mg(2+), Ca(2+), Zn(2+), Cu(2+), Ni(2+), and Mn(2+)) on 3' exonuclease was different for both substrates. High concentration of NaCl inhibited 3' exonuclease on both substrates. For both substrates, the 3' exonuclease activity of CpEndoIV on matched and mismatched 3' end was comparable.  相似文献   

20.
Epstein-Barr virus, a double-stranded DNA (dsDNA) virus, is a major human pathogen from the herpesvirus family. The nuclease is one of the lytic cycle proteins required for successful viral replication. In addition to the previously described endonuclease and exonuclease activities on single-stranded DNA and dsDNA substrates, we observed an RNase activity for Epstein-Barr virus nuclease in the presence of Mn2+, giving a possible explanation for its role in host mRNA degradation. Its crystal structure shows a catalytic core of the D-(D/E)XK nuclease superfamily closely related to the exonuclease from bacteriophage lambda with a bridge across the active-site canyon. This bridge may reduce endonuclease activity, ensure processivity or play a role in strand separation of dsDNA substrates. As the DNA strand that is subject to cleavage is likely to make a sharp turn in front of the bridge, endonuclease activity on single-stranded DNA stretches appears to be possible, explaining the cleavage of circular substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号