首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 8-oxo-7,8-dihydrodeoxyguanosine (8oxoG), a major mutagenic DNA lesion, results either from direct oxidation of guanines or misincorporation of 8oxodGTP by DNA polymerases. At present, little is known about the mechanisms preventing the mutagenic action of 8oxodGTP in Saccharomyces cerevisiae. Herein, we report for the first time the identification of an alternative repair pathway for 8oxoG residues initiated by S. cerevisiae AP endonuclease Apn1, which is endowed with a robust progressive 3'-->5' exonuclease activity towards duplex DNA. We show that yeast cell extracts, as well as purified Apn1, excise misincorporated 8oxoG, providing a damage-cleansing function to DNA synthesis. Consistent with these results, deletion of both OGG1 encoding 8oxoG-DNA glycosylase and APN1 causes nearly 46-fold synergistic increase in the spontaneous mutation rate, and this enhanced mutagenesis is primarily due to G . C to T . A transversions. Expression of the bacterial 8oxodGTP triphosphotase MutT in the apn1Delta ogg1Delta mutant reduces the mutagenesis. Taken together, our results indicate that Apn1 is involved in an S. cerevisiae 8-oxoguanine-DNA glycosylase (Ogg1)-independent repair pathway for 8oxoG residues. Interestingly, the human major AP endonuclease, Ape1, also exhibits similar exonuclease activity towards 8oxoG residues, raising the possibility that this enzyme could participate in the prevention of mutations that would otherwise result from the incorporation of 8oxodGTP.  相似文献   

2.
Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) and human 8-oxoguanine-DNA glycosylase (hOGG1) are base excision repair enzymes involved in the 8-oxoguanine (oxoG) repair pathway. Specific contacts between these enzymes and DNA phosphate groups play a significant role in DNA-protein interactions. To reveal the phosphates crucial for lesion excision by Fpg and hOGG1, modified DNA duplexes containing pyrophosphate and OEt-substituted pyrophosphate internucleotide (SPI) groups near the oxoG were tested as substrate analogues for both proteins. We have shown that Fpg and hOGG1 recognize and specifically bind the DNA duplexes tested. We have found that both enzymes were not able to excise the oxoG residue from DNA containing modified phosphates immediately 3' to the 8-oxoguanosine (oxodG) and one nucleotide 3' away from it. In contrast, they efficiently incised DNA duplexes bearing the same phosphate modifications 5' to the oxodG and two nucleotides 3' away from the lesion. The effect of these phosphate modifications on the substrate properties of oxoG-containing DNA duplexes is discussed. Non-cleavable oxoG-containing DNA duplexes bearing pyrophosphate or SPI groups immediately 3' to the oxodG or one nucleotide 3' away from it are specific inhibitors for both 8-oxoguanine-DNA glycosylases and can be used for structural studies of complexes comprising a wild-type enzymes bound to oxoG-containing DNA.  相似文献   

3.
DNA continuously undergoes oxidation damage from both exogenous and endogenous sources, including ionizing radiation, ultraviolet light, and products of metabolism. Replication of damaged DNA sometimes gives rise to mutations which can contribute to disease and aging. One of the most mutagenic lesions caused by DNA oxidation is 7,8-dihydro-8-oxoguanine (oxoG), which, if not repaired, results in G?→?T transversions. In human cells, oxoG is repaired through excision by 8-oxoguanine-DNA glycosylase hOGG1. In addition to its glycosylase activity, hOGG1 possesses an AP-lyase activity, which catalyzes the elimination of the 3’-phosphate (β-elimination) at the nascent, or preformed abasic (AP) site. The glycosidic bond breakage is initiated by a nucleophilic attack at C1’ by the Lys-249 residue resulting in a covalent enzyme–DNA-Schiff base intermediate, which then rearranges, and undergoes elimination. The 3-D structure of hOGG1shows that DNA binding is accompanied with drastic conformational changes, including DNA kinking, eversion of oxoGua from the double helix, and insertion of few amino acid residues into DNA. Previously (Kuznetsov et al., 2005, 2007), we have studied the stopped-flow kinetics of oxoG and AP site lesions processing by hOGG1. The character of tryptophan and 2-aminopurine fluorescence traces revealed that both the protein and the damaged DNA undergo extensive conformational changes in the course of DNA substrate binding- and -cleavage. To understand better, the mechanism by which hOGG1 recognizes DNA lesions, we have examined the influence of amino acid substitutions on conformational dynamics of hOGG1 and DNA during specific site recognition and conversion. Fluorescence kinetics of enzyme mutant forms F45?W, F319?W, Y203?W, Y203A, H270?W, K249Q demonstrated the multistep character of catalytic process and made clear the role of these amino acids for hOGG1 catalysis.  相似文献   

4.
8-Oxoguanine-DNA glycosylases play a key role in the repair of oxidatively damaged DNA. The Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) and human 8-oxoguanine-DNA glycosylase (hOGG1) are DNA base excision repair enzymes that catalyze the removal of 7,8-dihydro-8-oxoguanine (oxoG) residue, and cleave DNA strand. Specific contacts between DNA phosphate groups and amino acids from active centers of these enzymes play a significant role in DNA-protein interactions. In order to design new non-hydrolyzable substrate analogs of Fpg and hOGG1 for structural studies modified DNA duplexes containing pyrophosphate or OEt-substituted pyrophosphate internucleotide (SPI) groups near the damage were tested. We showed that enzymes recognize and specifically bind to DNA duplexes obtained. The mechanism of incision of oxoG by the Fpg and hOGG1 was determined. We revealed that both enzymes were not able to excise the oxoG residue from DNA containing modified phosphates immediately 3' to the oxoG. In contrast, Fpg and hOGG1 effectively incise DNA duplex carrying analogous phosphate modifications 5' to the oxoG. Non-cleavable oxoG-containing DNA duplexes bearing pyrophosphate or substituted pyrophosphate groups immediately 3' to the oxoG are specific inhibitors for both 8-oxoguanine-DNA glycosylases and can be used for structural studies of complexes comprising a oxoG-containing DNA bound to catalytically active wild-type enzymes as well as their pro- and eucaryotic homologs.  相似文献   

5.
Formamidopyrimidine-DNA glycosylase, Fpg protein from Escherichia coli, initiates base excision repair in DNA by removing a wide variety of oxidized lesions. In this study, we perform thermodynamic analysis of the multi-stage interaction of Fpg with specific DNA-substrates containing 7,8-dihydro-8-oxoguanosine (oxoG), or tetrahydrofuran (THF, an uncleavable abasic site analog) and non-specific (G) DNA-ligand based on stopped-flow kinetic data. Pyrrolocytosine, highly fluorescent analog of the natural nucleobase cytosine, is used to record multi-stage DNA lesion recognition and repair kinetics over a temperature range (10-30°C). The kinetic data were used to obtain the standard Gibbs energy, enthalpy and entropy of the specific stages using van't Hoff approach. The data suggest that not only enthalpy-driven exothermic oxoG recognition, but also the desolvation-accompanied entropy-driven enzyme-substrate complex adjustment into the catalytically active state play equally important roles in the overall process.  相似文献   

6.
7,8-Dihydro-8-oxoguanine (8oxoG) is a major mutagenic base lesion formed when reactive oxygen species react with guanine in DNA. The human 8oxoG DNA glycosylase (hOgg1) recognizes and initiates repair of 8oxoG. hOgg1 is acknowledged as a bifunctional DNA glycosylase catalyzing removal of the damaged base followed by cleavage of the backbone of the intermediate abasic DNA (AP lyase/β-elimination). When acting on 8oxoG-containing DNA, these two steps in the hOgg1 catalysis are considered coupled, with Lys249 implicated as a key residue. However, several lines of evidence point to a concurrent and independent monofunctional hydrolysis of the N-glycosylic bond being the in?vivo relevant reaction mode of hOgg1. Here, we present biochemical and structural evidence for the monofunctional mode of hOgg1 by design of separation-of-function mutants. Asp268 is identified as the catalytic residue, while Lys249 appears critical for the specific recognition and final alignment of 8oxoG during the hydrolysis reaction.  相似文献   

7.
The highly mutagenic A:oxoG (8-oxoguanine) base pair in DNA most frequently arises by aberrant replication of the primary oxidative lesion C:oxoG. This lesion is particularly insidious because neither of its constituent nucleobases faithfully transmit genetic information from the original C:G base pair. Repair of A:oxoG is initiated by adenine DNA glycosylase, which catalyzes hydrolytic cleavage of the aberrant A nucleobase from the DNA backbone. These enzymes, MutY in bacteria and MUTYH in humans, scrupulously avoid processing of C:oxoG because cleavage of the C residue in C:oxoG would actually promote mutagenic conversion to A:oxoG. Here we analyze the structural basis for rejection of C:oxoG by MutY, using a synthetic crystallography approach to capture the enzyme in the process of inspecting the C:oxoG anti-substrate, with which it ordinarily binds only fleetingly. We find that MutY uses two distinct strategies to avoid presentation of C to the enzyme active site. Firstly, MutY possesses an exo-site that serves as a decoy for C, and secondly, repulsive forces with a key active site residue prevent stable insertion of C into the nucleobase recognition pocket within the enzyme active site.  相似文献   

8.
Genomic DNA is prone to oxidation by reactive oxygen species. A major product of DNA oxidation is the miscoding base 8-oxoguanine (8-oxoG). The mutagenic effects of 8-oxoG in mammalian cells are prevented by a DNA repair system consisting of 8-oxoguanine-DNA glycosylase (Ogg1), adenine-DNA glycosylase, and 8-oxo-dGTPase. We have cloned, overexpressed, and characterized mOgg1, the product of the murine ogg1 gene. mOgg1 is a DNA glycosylase/AP lyase belonging to the endonuclease III family of DNA repair enzymes. The AP lyase activity of mOgg1 is significantly lower than its glycosylase activity. mOgg1 releases 8-oxoG from DNA when paired with C, T, or G, but efficient DNA strand nicking is observed only with 8-oxoG:C. Binding of mOgg1 to oligonucleotides containing 8-oxoG:C is strong (K(D) = 51.5 nm), unlike other mispairs. The average residence time for mOgg1 bound to substrate containing 8-oxoG:C is 18.3 min; the time course for accumulation of the NaBH(4)-sensitive intermediate suggests a two-step reaction mechanism. Various analogs of 8-oxoG were tested as substrates for mOgg1. An electron-withdrawing or hydrogen bond acceptor moiety at C8 is required for efficient binding of mOgg1. A substituent at C6 and a keto group at C8 are required for cleavage. The proposed mechanism of 8-oxoG excision involves protonation of O(8) or the deoxyribose oxygen moiety.  相似文献   

9.
MutM, a bacterial DNA glycosylase, protects genome integrity by catalyzing glycosidic bond cleavage of 8-oxoguanine (oxoG) lesions, thereby initiating base excision DNA repair. The process of searching for and locating oxoG lesions is especially challenging, because of the close structural resemblance of oxoG to its million-fold more abundant progenitor, G. Extrusion of the target nucleobase from the DNA double helix to an extrahelical position is an essential step in lesion recognition and catalysis by MutM. Although the interactions between the extruded oxoG and the active site of MutM have been well characterized, little is known in structural detail regarding the interrogation of extruded normal DNA bases by MutM. Here we report the capture and structural elucidation of a complex in which MutM is attempting to present an undamaged G to its active site. The structure of this MutM-extrahelical G complex provides insights into the mechanism MutM employs to discriminate against extrahelical normal DNA bases and into the base extrusion process in general.  相似文献   

10.
A thermostable 8-oxoguanine (oxoG) DNA glycosylase from Methanococcus jannaschii has been expressed in Escherichia coli, purified, and characterized. The enzyme, which has been named mjOgg, belongs to the same diverse DNA glycosylase superfamily as the 8-oxoguanine DNA glycosylases from yeast (yOgg1) and human (hOgg1) but is substantially different in sequence. In addition, unlike its eukaryotic counterparts, which have a strong preference for oxoG.C base pairs, mjOgg has little specificity for the base opposite oxoG. mjOgg has both DNA glycosylase and DNA lyase (beta-elimination) activity, and the combined glycosylase/lyase activity occurs at a rate comparable with the glycosylase activity alone. Mutation of Lys-129, analogous to Lys-241 of yOgg1, abolishes glycosylase activity.  相似文献   

11.
Eight alternatively spliced isoforms of human 8‐oxoguanine DNA glycosylase (OGG1) (OGG1‐1a to ‐1c and ‐2a to ‐2e) are registered in the National Center for Biotechnology Information. OGG1(s) in mitochondria have not yet been fully characterized biochemically. In this study, we purified mitochondrial recombinant OGG1‐1b protein and compared its activity with nuclear OGG1‐1a protein. The reaction rate constant (kg) of the 7,8‐dihydro‐8‐oxoguanine (8‐oxoG) glycosylase activity of OGG1‐1b was 8‐oxoG:C >> 8‐oxoG:T >> 8‐oxoG:G > 8‐oxoG:A (7.96, 0.805, 0.070, and 0.015 min?1, respectively) and that of the N‐glycosylase/DNA lyase activity (kgl) of OGG1‐1b was 8‐oxoG:C > 8‐oxoG:T ?8‐oxoG:G >> 8‐oxoG:A (0.286, 0.079, 0.040, and negligible min?1, respectively). These reaction rate constants were similar to those of OGG1‐1a except for kgl against 8‐oxoG:A. APEX nuclease 1 was required to promote DNA strand breakage by OGG1‐1b. These results suggest that OGG1‐1b is associated with 8‐oxoG cleavage in human mitochondria and that the mechanism of this repair is similar to that of nuclear OGG1‐1a.  相似文献   

12.
Human 8-oxoguanine-DNA glycosylase (OGG1) is the major enzyme for repairing 8-oxoguanine (8-oxoG), a mutagenic guanine base lesion produced by reactive oxygen species (ROS). A frequently occurring OGG1 polymorphism in human populations results in the substitution of serine 326 for cysteine (S326C). The 326 C/C genotype is linked to numerous cancers, although the mechanism of carcinogenesis associated with the variant is unclear. We performed detailed enzymatic studies of polymorphic OGG1 and found functional defects in the enzyme. S326C OGG1 excised 8-oxoG from duplex DNA and cleaved abasic sites at rates 2- to 6-fold lower than the wild-type enzyme, depending upon the base opposite the lesion. Binding experiments showed that the polymorphic OGG1 binds DNA damage with significantly less affinity than the wild-type enzyme. Remarkably, gel shift, chemical cross-linking and gel filtration experiments showed that S326C both exists in solution and binds damaged DNA as a dimer. S326C OGG1 enzyme expressed in human cells was also found to have reduced activity and a dimeric conformation. The glycosylase activity of S326C OGG1 was not significantly stimulated by the presence of AP-endonuclease. The altered substrate specificity, lack of stimulation by AP-endonuclease 1 (APE1) and anomalous DNA binding conformation of S326C OGG1 may contribute to its linkage to cancer incidence.  相似文献   

13.
In contrast to proteins recognizing small-molecule ligands, DNA-dependent enzymes cannot rely solely on interactions in the substrate-binding centre to achieve their exquisite specificity. It is widely believed that substrate recognition by such enzymes involves a series of conformational changes in the enzyme–DNA complex with sequential gates favoring cognate DNA and rejecting nonsubstrates. However, direct evidence for such mechanism is limited to a few systems. We report that discrimination between the oxidative DNA lesion, 8-oxoguanine (oxoG) and its normal counterpart, guanine, by the repair enzyme, formamidopyrimidine-DNA glycosylase (Fpg), likely involves multiple gates. Fpg uses an aromatic wedge to open the Watson–Crick base pair and everts the lesion into its active site. We used molecular dynamics simulations to explore the eversion free energy landscapes of oxoG and G by Fpg, focusing on structural and energetic details of oxoG recognition. The resulting energy profiles, supported by biochemical analysis of site-directed mutants disturbing the interactions along the proposed path, show that Fpg selectively facilitates eversion of oxoG by stabilizing several intermediate states, helping the rapidly sliding enzyme avoid full extrusion of every encountered base for interrogation. Lesion recognition through multiple gating intermediates may be a common theme in DNA repair enzymes.  相似文献   

14.
Base excision repair (BER) is a very important repair mechanism to cope with oxidative DNA damage. One of the most predominating oxidative DNA damages after exposure to ionizing radiation is 7, 8-dihydro-8-oxoguanine (8oxoG). This damage is repaired by formamidopyrimidine-DNA glycosylase (Fpg), a DNA glycosylase which is part of BER. Correct repair of 8oxoG is of great importance for cells, because 8oxoG has strong miscoding properties. Mispairing of 8oxoG with adenine instead of cytosine results in G:C to T:A transversion mutations. To determine the effect of a Fpg-deficiency on the spontaneous and gamma-radiation-induced mutation spectrum in the lacZ gene, double-stranded (ds) M13 DNA, with the lacZalpha gene inserted as mutational target, was irradiated with gamma-rays in aqueous solution under oxic conditions. Subsequently, the DNA was transfected into a wild-type Escherichia coli strain (JM105) and an isogenic Fpg-deficient E. coli strain (BH410). Although the overall spontaneous mutation spectra between JM105 and BH410 seemed similar, remarkable differences could be observed when the individual base pair substitutions were viewed. The amount of C to A transversions, which are most probably caused by unrepaired 8oxoG, has increased 3. 5-fold in the spontaneous BH410 spectrum. When the gamma-radiation-induced mutation spectra of JM105 and BH410 were compared, there was even a larger increase of C to A transversions in the BH410 strain (7-fold). We can therefore conclude that the straightforward approach used in this study confirms the importance of Fpg in repair of gamma-radiation-induced damage, and most probably especially in the repair of 8oxoG.  相似文献   

15.
DNA glycosylase recognition and catalysis   总被引:5,自引:0,他引:5  
DNA glycosylases are the enzymes responsible for recognizing base lesions in the genome and initiating base excision DNA repair. Recent structural and biochemical results have provided novel insights into DNA damage recognition and repair. The basis of the recognition of the oxidative lesion 8-oxoguanine by two structurally unrelated DNA glycosylases is now understood and has been revealed to involve surprisingly similar strategies. Work on MutM (Fpg) has produced structures representing three discrete reaction steps. The NMR structure of 3-methyladenine glycosylase I revealed its place among the structural families of DNA glycosylases and the X-ray structure of SMUG1 likewise confirmed that this protein is a member of the uracil DNA glycosylase superfamily. A novel disulfide cross-linking strategy was used to obtain the long-anticipated structure of MutY bound to DNA containing an A*oxoG mispair.  相似文献   

16.
MutM is a bacterial DNA glycosylase that serves as the first line of defense against the highly mutagenic 8-oxoguanine (oxoG) lesion, catalyzing glycosidic bond cleavage of oxoG to initiate base excision DNA repair. Previous work has shown that MutM actively interrogates DNA for the presence of an intrahelical oxoG lesion. This interrogation process involves significant buckling and bending of the DNA to promote extrusion of oxoG from the duplex. Structural snapshots have revealed several different highly conserved residues that are prominently inserted into the duplex in the vicinity of the target oxoG before and after base extrusion has occurred. However, the roles of these helix-invading residues during the lesion recognition and base extrusion process remain unclear. In this study, we set out to probe the function of residues Phe114 and Met77 in oxoG recognition and repair. Here we report a detailed biochemical and structural characterization of MutM variants containing either a F114A or M77A mutation, both of which showed significant decreases in the efficiency of oxoG repair. These data reveal that Met77 plays an important role in stabilizing the lesion-extruded conformation of the DNA. Phe114, on the other hand, appears to destabilize the intrahelical state of the oxoG lesion, primarily by buckling the target base pair. We report the observation of a completely unexpected interaction state, in which the target base pair is ruptured but remains fully intrahelical; this structure vividly illustrates the disruptive influence of MutM on the target base pair.  相似文献   

17.
The base lesion 8-oxoguanine is formed readily by oxidation of DNA, potentially leading to G → T transversion mutations. Despite the apparent similarity of 8-oxoguanine-cytosine base pairs to normal guanine-cytosine base pairs, cellular base excision repair systems effectively recognize the lesion base. Here we apply several techniques to examine a single 8-oxoguanine lesion at the center of a nonpalindromic 15-mer duplex oligonucleotide in an effort to determine what, if anything, distinguishes an 8-oxoguanine-cytosine (8oxoG-C) base pair from a normal base pair. The lesion duplex is globally almost indistinguishable from the unmodified parent duplex using circular dichroism spectroscopy and ultraviolet melting thermodynamics. The DNA mismatch-detecting photocleavage agent Rh(bpy)(2)chrysi(3+) cleaves only weakly and nonspecifically, revealing that the 8oxoG-C pair is locally stable at the level of the individual base pairs. Nuclear magnetic resonance spectra are also consistent with a well-conserved B-form duplex structure. In the two-dimensional nuclear Overhauser effect spectra, base-sugar and imino-imino cross-peaks are strikingly similar between parent and lesion duplexes. Changes in chemical shift due to the 8oxoG lesion are localized to its complementary cytosine and to the 2-3 bp immediately flanking the lesion on the lesion strand. Residues further removed from the lesion are shown to be unperturbed by its presence. Notably, imino exchange experiments indicate that the 8-oxoguanine-cytosine pair is strong and stable, with an apparent equilibrium constant for opening equal to that of other internal guanine-cytosine base pairs, on the order of 10(-6). This collection of experiments shows that the 8-oxoguanine-cytosine base pair is incredibly stable and similar to the native pair.  相似文献   

18.
The human 8-oxoguanine DNA glycosylase (hOGG1) protein is responsible for initiating base excision DNA repair of the endogenous mutagen 8-oxoguanine. Like nearly all DNA glycosylases, hOGG1 extrudes its substrate from the DNA helix and inserts it into an extrahelical enzyme active site pocket lined with residues that participate in lesion recognition and catalysis. Structural analysis has been performed on mutant versions of hOGG1 having changes in catalytic residues but not on variants having altered 7,8-dihydro-8-oxoguanine (oxoG) contact residues. Here we report high resolution structural analysis of such recognition variants. We found that Ala substitution at residues that contact the phosphate 5' to the lesion (H270A mutation) and its Watson-Crick face (Q315A mutation) simply removed key functionality from the contact interface but otherwise had no effect on structure. Ala substitution at the only residue making an oxoG-specific contact (G42A mutation) introduced torsional stress into the DNA contact surface of hOGG1, but this was overcome by local interactions within the folded protein, indicating that this oxoG recognition motif is "hardwired." Introduction of a side chain intended to sterically obstruct the active site pocket (Q315F mutation) led to two different structures, one of which (Q315F(*149)) has the oxoG lesion in an exosite flanking the active site and the other of which (Q315F(*292)) has the oxoG inserted nearly completely into the lesion recognition pocket. The latter structure offers a view of the latest stage in the base extrusion pathway yet observed, and its lack of catalytic activity demonstrates that the transition state for displacement of the lesion base is geometrically demanding.  相似文献   

19.
The products of oxidative damage to double-stranded (ds) DNA initiated by photolytically generated sulfate radical anions SO4?? were analyzed using reverse-phase (RP) high-performance liquid chromatography (HPLC). Relative efficiencies of two major pathways were compared: production of 8-oxoguanine (8oxoG) and hydrogen abstraction from the DNA 2-deoxyribose moiety (dR) at C1,′ C4,′ and C5′ positions. The formation of 8oxoG was found to account for 87% of all quantified lesions at low illumination doses. The concentration of 8oxoG quickly reaches a steady state at about one 8oxoG per 100 base pairs due to further oxidation of its products. It was found that another guanine oxidation product identified as 2-amino-5-(2′-alkylamino)-4H-imidazol-4-one (X) was released in significant quantities from its tentative precursor 2-amino-5-[(2′-deoxy-β-d-erythro-pentofuranosyl)amino]-4H-imidazol-4-one (dIz) upon treatment with primary amines in neutral solutions. The linear dose dependence of X release points to the formation of dIz directly from guanine and not through oxidation of 8oxoG. The damage to dR was found to account for about 13% of the total damage, with majority of lesions (33%) originating from the C4′ oxidation. The contribution of C1′ oxidation also turned out to be significant (17% of all dR damages) despite of the steric problems associated with the abstraction of the C1′-hydrogen. However, no evidence of base-to-sugar free valence transfer as a possible alternative to direct hydrogen abstraction at C1′ was found.  相似文献   

20.
8-Oxoguanine DNA damage: at the crossroad of alternative repair pathways   总被引:11,自引:0,他引:11  
Radical oxygen species (ROS) generate various modified DNA bases. Among them 8-oxo-7,8-dihydroguanine (8oxoG) is the most abundant and seems to play a major role in mutagenesis and in carcinogenesis. 8oxoG is removed from DNA by the specific glycosylase OGG1. An additional post-replication repair is needed to correct the 8oxoG/A mismatches that are produced by persistent 8oxoG residues. This review is focused on the mechanisms of base excision repair (BER) of this oxidized base. It is shown that, in vitro, efficient and complete repair of 8oxoG/C pairs requires a core of four proteins, namely OGG1, APE1, DNA polymerase (Pol) beta, and DNA ligase I. Repair occurs predominantly by one nucleotide replacement reactions (short-patch BER) and Pol beta is the polymerase of election for the resynthesis step. However, alternative mechanisms can act on 8oxoG residues since Pol beta-null cells are able to repair these lesions. 8oxoG/A mismatches are repaired by human cell extracts via two BER events which occur sequentially on the two strands. The removal of the mismatched adenine is followed by preferential insertion of a cytosine leading to the formation of 8oxoG/C pairs which are then corrected by OGG1-mediated BER. Both repair events are inhibited by aphidicolin, suggesting that a replicative DNA polymerase is involved in the repair synthesis step. We propose that Pol delta/epsilon-mediated BER (long-patch BER) is the mode of repair when lesions persist or are formed at replication. Finally, we address the issues of the relative contribution of the two BER pathways to oxidative damage repair in vivo and the possible role of BER gene variants as cancer susceptibility genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号