首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Remakus S  Sigal LJ 《Journal of virology》2011,85(23):12578-12584
The two major antiviral effector mechanisms of CD8(+) T cells are thought to be perforin (Prf)-mediated cell lysis and gamma interferon (IFN-γ)-mediated induction of an antiviral state. By affecting the expression of proteins involved in antigen presentation, IFN-γ is also thought to shape the magnitude and specificity of the CD8(+) T cell response. Here we studied the roles of Prf and IFN-γ in shaping the effector and memory CD8(+) T cell responses to vaccinia virus (VACV). IFN-γ deficiency resulted in increased numbers of anti-VACV effector and memory CD8(+) T cells, which were partly dependent on increased virus loads. On the other hand, Prf-deficient mice showed an increase in the number of VACV-specific CD8(+) T cells only in the memory phase. Treatment of the mice with the antiviral drug cidofovir reduced the numbers of effector and memory cells closer to wild-type levels in IFN-γ-deficient mice and reduced the numbers of memory CD8(+) T cells to wild-type levels in Prf-deficient mice. These data suggest that virus loads are the main reason for the increased strength of the CD8 response in IFN-γ- and Prf-deficient mice. Neither Prf deficiency nor IFN-γ deficiency had an effect on the immunodominance hierarchy of five K(b)-restricted CD8(+) T cell determinants either during acute infection or after recovery. Thus, our work shows that CD8(+) T cell immunodominance during VACV infection is not affected by the effects of IFN-γ on the antigen presentation machinery.  相似文献   

2.
Agonistic anti-4-1BB Ab is known to ameliorate experimental autoimmune encephalomyelitis. 4-1BB triggering typically leads to the expansion of CD8(+) T cells, which produce abundant IFN-γ, and this in turn results in IDO-dependent suppression of autoimmune responses. However, because neutralization of IFN-γ or depletion of CD8(+) T cell only partially abrogates the effect of 4-1BB triggering, we sought to identify an additional mechanism of 4-1BB-triggered suppression of autoimmune responses using IFN-γ- or IFN-γR-deficient mice. 4-1BB triggering inhibited the generation of Th17 cells that is responsible for experimental autoimmune encephalomyelitis induction and progression, and increased Foxp3(+)CD4(+) regulatory T (Treg) cells, particularly among CD4(+) T cells. This was not due to a direct effect of 4-1BB signaling on CD4(+) T cell differentiation: 4-1BB signaling not only reduced Th17 cells and increased Treg cells in wild-type mice, which could be due to IFN-γ production by the CD8(+) T cells, but also did so in IFN-γ-deficient mice, in that case by downregulating IL-6 production. These results show that although secondary suppressive mechanisms evoked by 4-1BB triggering are usually masked by the strong effects of IFN-γ, 4-1BB signaling seems to modulate autoimmune responses by a number of mechanisms, and modulation of the Th17 versus Treg cell balance is one of those mechanisms.  相似文献   

3.
4.
Gut-homing of donor T cells is causative for the development of intestinal GvHD in recipients of allogeneic hematopoietic stem cell transplantation (HSCT). Expression of the gut-specific homing receptors integrin-α4β7 and chemokine receptor CCR9 on T cells is imprinted in gut-associated lymphoid tissues (GALT) under the influence of the vitamin A metabolite retinoic acid. Here we addressed the role of vitamin A deficiency in HSCT-recipients for donor T cell migration in the course of experimental GvHD. Vitamin A-deficient (VAD) mice were prepared by feeding them a vitamin A-depleted diet. Experiments were performed in a C57BL/6 into BALB/c model of acute GvHD. We found that expression of integrin-α4β7 and CCR9 in GALT was reduced in VAD recipients after HSCT. Competitive in vivo homing assays showed that allogeneic T cells primed in VAD mice did not home as efficiently to the intestine as T cells primed in mice fed with standard diet (STD). The course of GvHD was ameliorated in VAD HSCT-recipients and, consequently, their survival was prolonged compared to recipients receiving STD. However, VAD-recipients were not protected and died of clinical GvHD. We found reduced numbers of donor T cells in the intestine but increased cell counts and tissue damage in other organs of VAD-recipients. Furthermore, we observed high IFN-γ(+)CD4(+) and low FoxP3(+)CD4(+) frequencies of total donor CD4(+) T cells in VAD as compared to STD recipients. Taken together, these results indicate that dietary vitamin A deficiency in HSCT-recipients changed target organ tropism in GvHD but also resulted in fatal inflammation after HSCT.  相似文献   

5.
The vitamin A metabolite retinoic acid (RA) plays a crucial role in mucosal immune responses. We demonstrate in this study that RA-producing retinaldehyde dehydrogenase (RALDH) enzymes are postnatally induced in mesenteric lymph node (MLN) dendritic cells (DCs) and MLN stromal cells. RALDH enzyme activity in lamina propria-derived CD103(+) MLN-DCs did not depend on TLR signaling. Remarkably, RA itself could directly induce RALDH2 in both DCs and stromal cells in vitro. Furthermore, upon provision of a vitamin A-deficient diet, it was found that RA-mediated signaling was strongly reduced within the small intestines, while RALDH2 mRNA and RALDH enzyme activity in lamina propria DCs and MLN-DCs, as well as RALDH2 mRNA expression in MLN stromal cells, were strongly diminished. Moreover, supply of vitamin A to vitamin A-deficient mice restored RA-mediated signaling in the intestine and RALDH activity in lamina propria-derived CD103(+) MLN-DCs. Our results show that RA-dependent signaling within the intestine is indispensable for RALDH activity in the draining MLN.  相似文献   

6.
It is well established that IFN-γ is required for the development of experimental cerebral malaria (ECM) during Plasmodium berghei ANKA infection of C57BL/6 mice. However, the temporal and tissue-specific cellular sources of IFN-γ during P. berghei ANKA infection have not been investigated, and it is not known whether IFN-γ production by a single cell type in isolation can induce cerebral pathology. In this study, using IFN-γ reporter mice, we show that NK cells dominate the IFN-γ response during the early stages of infection in the brain, but not in the spleen, before being replaced by CD4(+) and CD8(+) T cells. Importantly, we demonstrate that IFN-γ-producing CD4(+) T cells, but not innate or CD8(+) T cells, can promote the development of ECM in normally resistant IFN-γ(-/-) mice infected with P. berghei ANKA. Adoptively transferred wild-type CD4(+) T cells accumulate within the spleen, lung, and brain of IFN-γ(-/-) mice and induce ECM through active IFN-γ secretion, which increases the accumulation of endogenous IFN-γ(-/-) CD8(+) T cells within the brain. Depletion of endogenous IFN-γ(-/-) CD8(+) T cells abrogates the ability of wild-type CD4(+) T cells to promote ECM. Finally, we show that IFN-γ production, specifically by CD4(+) T cells, is sufficient to induce expression of CXCL9 and CXCL10 within the brain, providing a mechanistic basis for the enhanced CD8(+) T cell accumulation. To our knowledge, these observations demonstrate, for the first time, the importance of and pathways by which IFN-γ-producing CD4(+) T cells promote the development of ECM during P. berghei ANKA infection.  相似文献   

7.
IFN-γ and T cells are both required for the development of experimental cerebral malaria during Plasmodium berghei ANKA infection. Surprisingly, however, the role of IFN-γ in shaping the effector CD4(+) and CD8(+) T cell response during this infection has not been examined in detail. To address this, we have compared the effector T cell responses in wild-type and IFN-γ(-/-) mice during P. berghei ANKA infection. The expansion of splenic CD4(+) and CD8(+) T cells during P. berghei ANKA infection was unaffected by the absence of IFN-γ, but the contraction phase of the T cell response was significantly attenuated. Splenic T cell activation and effector function were essentially normal in IFN-γ(-/-) mice; however, the migration to, and accumulation of, effector CD4(+) and CD8(+) T cells in the lung, liver, and brain was altered in IFN-γ(-/-) mice. Interestingly, activation and accumulation of T cells in various nonlymphoid organs was differently affected by lack of IFN-γ, suggesting that IFN-γ influences T cell effector function to varying levels in different anatomical locations. Importantly, control of splenic T cell numbers during P. berghei ANKA infection depended on active IFN-γ-dependent environmental signals--leading to T cell apoptosis--rather than upon intrinsic alterations in T cell programming. To our knowledge, this is the first study to fully investigate the role of IFN-γ in modulating T cell function during P. berghei ANKA infection and reveals that IFN-γ is required for efficient contraction of the pool of activated T cells.  相似文献   

8.
Toxic shock syndrome (TSS) caused by the superantigen exotoxins of Staphylococcus aureus and Streptococcus pyogenes is characterized by robust T cell activation, profound elevation in systemic levels of multiple cytokines, including interferon-γ (IFN-γ), followed by multiple organ dysfunction and often death. As IFN-γ possesses pro- as well as anti-inflammatory properties, we delineated its role in the pathogenesis of TSS. Antibody-mediated in vivo neutralization of IFN-γ or targeted disruption of IFN-γ gene conferred significant protection from lethal TSS in HLA-DR3 transgenic mice. Following systemic high dose SEB challenge, whereas the HLA-DR3.IFN-γ(+/+) mice became sick and succumbed to TSS, HLA-DR3.IFN-γ(-/-) mice appeared healthy and were significantly protected from SEB-induced lethality. SEB-induced systemic cytokine storm was significantly blunted in HLA-DR3.IFN-γ(-/-) transgenic mice. Serum concentrations of several cytokines (IL-4, IL-10, IL-12p40 and IL-17) and chemokines (KC, rantes, eotaxin and MCP-1) were significantly lower in HLA-DR3.IFN-γ(-/-) transgenic mice. However, SEB-induced T cell expansion in the spleens was unaffected and expansion of SEB-reactive TCR Vβ8(+) CD4(+) and CD8(+) T cells was even more pronounced in HLA-DR3.IFN-γ(-/-) transgenic mice when compared to HLA-DR3.IFN-γ(+/+) mice. A systematic histopathological examination of several vital organs revealed that both HLA-DR3.IFN-γ(+/+) and HLA-DR3.IFN-γ(-/-) transgenic mice displayed comparable severe inflammatory changes in lungs, and liver during TSS. Remarkably, whereas the small intestines from HLA-DR3.IFN-γ(+/+) transgenic mice displayed significant pathological changes during TSS, the architecture of small intestines in HLA-DR3.IFN-γ(-/-) transgenic mice was preserved. In concordance with these histopathological changes, the gut permeability to macromolecules was dramatically increased in HLA-DR3.IFN-γ(+/+) but not HLA-DR3.IFN-γ(-/-) mice during TSS. Overall, IFN-γ seemed to play a lethal role in the immunopathogenesis of TSS by inflicting fatal small bowel pathology. Our study thus identifies the important role for IFN-γ in TSS.  相似文献   

9.
Immune complex-induced acute lung injury (IC-ALI) has been implicated in various pulmonary disease states. However, the role of NKT cells in IC-ALI remains unknown. Therefore, we explored NKT cell functions in IC-ALI using chicken egg albumin and anti-chicken egg albumin IgG. The bronchoalveolar lavage fluid of CD1d(-/-) and Jα18(-/-) mice contained few Ly6G(+)CD11b(+) granulocytes, whereas levels in B6 mice were greater and were increased further by α-galactosyl ceramide. IFN-γ and MIP-1α production in the lungs was greater in B6 than CD1d(-/-) mice. Adoptive transfer of wild type (WT) but not IFN-γ-, MIP-1α-, or FcγR-deficient NKT cells into CD1d(-/-) mice caused recruitment of inflammatory cells to the lungs. Moreover, adoptive transfer of IFN-γR-deficient NKT cells enhanced MIP-1α production and cell recruitment in the lungs of CD1d(-/-) or CD1d(-/-)IFN-γ(-/-) mice, but to a lesser extent than WT NKT cells. This suggests that IFN-γ-producing NKT cells enhance MIP-1α production in both an autocrine and a paracrine manner. IFN-γ-deficient NKT cells induced less IL-1β and TNF-α production by alveolar macrophages and dendritic cells in CD1d(-/-) mice than did WT NKT cells. Taken together, these data suggest that CD1d-restricted IFN-γ-producing NKT cells promote IC-ALI by producing MIP-1α and enhancing proinflammatory cytokine production by alveolar macrophages and dendritic cells.  相似文献   

10.
CD8(+) T cells become exhausted, inducing cell surface protein programmed cell death-1 (PD-1) as chronic virus diseases or tumors progress, but underlying mechanisms of this are unclear. We previously showed that M-CSF is important for developing tolerogenic dendritic cells (DCs) from human CD14(+) monocytes. In this article, we identify M-CSF-derived DCs (M-DCs) after stimulation with IL-10 as myeloid-derived suppressor cells with additional tolerogenic activities to CD8(+) T cells. IL-10 increased PD-1 ligand expression on M-DC, and IL-10-stimulated M-DCs (M-DC/IL-10) induced expression of PD-1 on, and apoptosis of, CD8(+) T cells and phagocytosed CD8(+) T cells. Enhanced phagocytic activity of M-DC/IL-10 required IFN-γ, which further increased PD-1 ligand and PD-2 ligand expression on M-DC/IL-10. IFN-γ-stimulated M-DC/IL-10 cells were phenotypically macrophage-like cells with little or no expression of CD86, a costimulatory molecule, but with high expression levels of CD14, CD200R, and CD80. No phagocytic activity was detected with GM-CSF-derived DCs. We propose that phagocytosis by IFN-γ-stimulated M-DC/IL-10 cells, which may be DCs or, alternatively, a unique subset of macrophages, may be a mechanism by which IFN-γ-producing CD8(+) T cells are tolerized after type 1 immune responses to chronic virus or tumor, and that IFN-γ links effector CD8(+) T cells to their phagocytic clearance.  相似文献   

11.
Costimulation-deficient dendritic cells (DCs) prevent autoimmune disease in mouse models. However, autoimmune-prone mice and humans fail to control expansion of peripheral autoreactive effector memory T cells (T(EMs)), which resist immunoregulation by costimulation-deficient DCs. In contrast, activation of DC costimulation may be coupled with regulatory capacity. To test whether costimulatory DCs control T(EMs) and attenuate established autoimmune disease, we used RelB-deficient mice, which have multiorgan inflammation, expanded peripheral autoreactive T(EMs), and dysfunctional Foxp3(+) regulatory T cells (Tregs) cells and conventional DCs. T(EMs) were regulated by Foxp3(+) Tregs when costimulated by CD3/CD28-coated beads or wild-type DCs but not DCs deficient in RelB or CD80/CD86. After transfer, RelB and CD80/CD86-sufficient DCs restored tolerance and achieved a long-term cure of autoimmune disease through costimulation of T(EM) and Foxp3(+) Treg IFN-γ production, as well as induction of IDO by host APCs. IDO was required for regulation of T(EMs) and suppression of organ inflammation. Our data challenge the paradigm that costimulation-deficient DCs are required to regulate established autoimmune disease to avoid T(EM) activation and demonstrate cooperative cross-talk between costimulatory DCs, IFN-γ, and IDO-dependent immune regulation. IFN-γ and IDO activity may be good surrogate biomarkers measured against clinical efficacy in trials of autoimmune disease immunoregulation.  相似文献   

12.
We investigated the role of Peyer's patch (PP) dendritic cells (DCs) in the production of interferon (IFN)-γ from naïve CD4+ T cells of T cell receptor transgenic mice. PP DCs were found to prime naïve CD4+ T cells for the production of higher levels of IFN-γ, when compared to spleen (SP) DCs. However, a similar level of interleukin-12 (IL-12) production was observed for PP and SP DCs stimulated via the CD40 molecule. In addition, PP DCs expressed slightly higher levels of B7.2 (CD86) compared to SP DCs. This data demonstrates that PP DCs have a distinct function in the induction of IFN-γs and suggests that PP DCs may enhance IFN-γ production via another cytokine or costimulatory molecule, in addition to IL-12.  相似文献   

13.
The chemokine receptor CXCR3 is preferentially expressed by Th1 cells and critically involved in their recruitment to inflamed tissue. In a mouse model of immune-mediated liver injury inducible by Con A, we investigated the role of CXCR3 in acute IFN-γ-mediated hepatitis as well as in tolerance induction, which has been shown to depend on IL-10-producing CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs). Induction of Con A hepatitis resulted in increased intrahepatic expression of the CXCR3 ligands CXCL9, CXCL10, and CXCL11. CXCR3(-/-) mice developed a more severe liver injury with higher plasma transaminase activities and a more pronounced Th1/Th17 response compared with wild-type (wt) animals upon Con A injection. Moreover, CXCR3(-/-) mice did not establish tolerance upon Con A restimulation, although Tregs from CXCR3(-/-) mice were still suppressive in an in vitro suppression assay. Instead, Tregs failed to accumulate in livers of CXCR3(-/-) mice upon Con A restimulation in contrast to those from wt animals. Con A-tolerant wt mice harbored significantly increased numbers of intrahepatic CXCR3(+)T-bet(+) Tregs that produced IL-10 compared with nontolerant animals. IFN-γ deficiency or anti-IFN-γ Ab treatment demonstrated that conversion to CXCR3(+)T-bet(+) Tregs depended on a Th1 response. Accordingly, in an immunotherapeutic approach, CD4(+)CD25(+)Foxp3(+) Tregs from Con A-pretreated CXCR3-deficient mice failed to protect against Con A-induced hepatitis, whereas Tregs from Con A-tolerant wt mice allowed CXCR3-deficient mice to recover from Con A hepatitis. In summary, CXCR3(+)T-bet(+)IL-10(+) Tregs are generated in the liver in dependence of IFN-γ, then disseminated into the organism and specifically migrate into the liver, where they limit immune-mediated liver damage.  相似文献   

14.
We investigated mechanisms by which TLR9 signaling promoted the development of the protective response to Cryptococcus neoformans in mice with cryptococcal pneumonia. The afferent (week 1) and efferent (week 3) phase immune parameters were analyzed in the infected wild-type (TLR9(+/+)) and TLR-deficient (TLR9(-/-)) mice. TLR9 deletion diminished 1) accumulation and activation of CD11b(+) dendritic cells (DCs), 2) the induction of IFN-γ and CCR2 chemokines CCL7, CCL12, but not CCL2, at week 1, and 3) pulmonary accumulation and activation of the major effector cells CD4(+) and CD8(+) T cells, CD11b(+) lung DCs, and exudate macrophages at week 3. The significance of CCL7 induction downstream of TLR9 signaling was investigated by determining whether CCL7 reconstitution would improve immunological parameters in C. neoformans-infected TLR9(-/-) mice. Early reconstitution with CCL7 1) improved accumulation and activation of CD11b(+) DCs at week 1, 2) restored early IFN-γ production in the lungs, and 3) restored the accumulation of major effector cell subsets. CCL7 administration abolished the difference in lung fungal burdens between TLR9(+/+) and TLR9(-/-) mice at week 3; however, significant reduction of fungal burdens between PBS- and CCL7-treated mice has not been observed, suggesting that additional mechanism(s) apart from early CCL7 induction contribute to optimal fungal clearance in TLR9(+/+) mice. Collectively, we show that TLR9 signaling during the afferent phase contributes to the development of protective immunity by promoting the early induction of CCL7 and IFN-γ and the subsequent early recruitment and activation of DCs and additional effector cells in mice with cryptococcal pneumonia.  相似文献   

15.
Multiple factors control susceptibility of C57BL/6 mice to infection with the helminth Heligmosomoides polygyrus, including TGF-β signaling, which inhibits immunity in vivo. However, mice expressing a T cell-specific dominant-negative TGF-β receptor II (TGF-βRII DN) show dampened Th2 immunity and diminished resistance to infection. Interestingly, H. polygyrus-infected TGF-βRII DN mice show greater frequencies of CD4(+)Foxp3(+)Helios(+) Tregs than infected wild-type mice, but levels of CD103 are greatly reduced on both these cells and on the CD4(+)Foxp3(+)Helios(-) population. Although Th9 and Th17 levels are comparable between infected TGF-βRII DN and wild-type mice, the former develop exaggerated CD4(+) and CD8(+) T cell IFN-γ responses. Increased susceptibility conferred by TGF-βRII DN expression was lost in IFN-γ-deficient mice, although they remained unable to completely clear infection. Hence, overexpression of IFN-γ negatively modulates immunity, and the presence of Helios(+) Tregs may maintain susceptibility on the C57BL/6 background.  相似文献   

16.
Both CD4(+) and CD8(+) T cells contribute to immunity to tuberculosis, and both can produce the essential effector cytokine IFN-γ. However, the precise role and relative contribution of each cell type to in vivo IFN-γ production are incompletely understood. To identify and quantitate the cells that produce IFN-γ at the site of Mycobacterium tuberculosis infection in mice, we used direct intracellular cytokine staining ex vivo without restimulation. We found that CD4(+) and CD8(+) cells were predominantly responsible for production of this cytokine in vivo, and we observed a remarkable linear correlation between the fraction of CD4(+) cells and the fraction of CD8(+) cells producing IFN-γ in the lungs. In the absence of CD4(+) cells, a reduced fraction of CD8(+) cells was actively producing IFN-γ in vivo, suggesting that CD4(+) effector cells are continually required for optimal IFN-γ production by CD8(+) effector cells. Accordingly, when infected mice were treated i.v. with an MHC-II-restricted M. tuberculosis epitope peptide to stimulate CD4(+) cells in vivo, we observed rapid activation of both CD4(+) and CD8(+) cells in the lungs. Indirect activation of CD8(+) cells was dependent on the presence of CD4(+) cells but independent of IFN-γ responsiveness of the CD8(+) cells. These data provide evidence that CD4(+) cell deficiency impairs IFN-γ production by CD8(+) effector cells and that ongoing cross-talk between distinct effector T cell types in the lungs may contribute to a protective immune response against M. tuberculosis. Conversely, defects in these interactions may contribute to susceptibility to tuberculosis and other infections.  相似文献   

17.
18.
Staphylococcus aureus infection elicits through its mature lipoproteins an innate immune response by TLR2-MyD88 signaling, which improves bacterial clearing and disease outcome. The role of dendritic cells (DCs) and T cells in this immune activation and the function of T and B cells in defense against S. aureus infection remain unclear. Therefore, we first evaluated DC and T cell activation after infection with S. aureus wild type (WT) and its isogenic mutant, which is deficient in lipoprotein maturation, in vitro. Lipoproteins in viable S. aureus contributed via TLR2-MyD88 to activation of DCs, which promoted the release of IFN-γ and IL-17 in CD4(+) T cells. This strong effect was independent of superantigens and MHC class II. We next evaluated the function of T cells and their cytokines IFN-γ and IL-17 in infection in vivo. Six days after systemic murine infection IFN-γ, IL-17, and IL-10 production in total spleen cells were MyD88-dependent and their levels increased until day 21. The comparison of CD3(-/-), Rag2(-/-), and C57BL/6 mice after infection revealed that IFN-γ and IL-17 originated from T cells and IL-10 originated from innate immune cells. Furthermore, vaccination of mice to activate T and B cells did not improve eradication of S. aureus from organs. In conclusion, S. aureus enhances DC activation via TLR2-MyD88 and thereby promotes T(H)1 and T(H)17 cell differentiation. However, neither T cells and their MyD88-regulated products, IFN-γ and IL-17, nor B cells affected bacterial clearing from organs and disease outcome.  相似文献   

19.
We have previously shown that the fusion of GM-CSF and IL-21 (GIFT-21) possesses a potent immune stimulatory effect on myeloid cells. In this study, we define the effect of GIFT-21 on naive murine monocytes (GIFT-21 dendritic cells [DCs]), which express increased levels of Gr-1, CD45R, MHC class I, CD80, CD86, and CXCR4 and suppress CD11c and MHC class II. Compared with conventional dendritic cells, GIFT-21 DCs produced substantially more CCL2, IL-6, TNF-α, and IFN-α and induced significantly greater production of IFN-γ by CD8(+) T cells in MHC class I-restricted Ag presentation assays. B16 melanoma and D2F2 Neu breast cancer growth was inhibited in mice treated with Ag-naive GIFT-21 DCs. This effect was lost in CD8(-/-) and CCR2(-/-) mice and when mice were treated with β(2)-microglobulin-deficient GIFT-21 DCs, indicating that GIFT-21 DCs migrated to and sampled from the tumors to present tumor Ags to CCL2 recruited CD8(+) T cells via MHC class I. We propose that autologous GIFT-21 DCs may serve as a cell therapy platform for the treatment of cancer.  相似文献   

20.
Dendritic cells (DCs) as antigen presenting cells can stimulate naive CD4+ T cells and initiate the primary immune response which controls Th1/Th2 development. It has been suggested that DCs derived from different tissues have distinct properties. We investigated whether DCs from mesenteric lymph nodes (MLN), Peyer's patches (PP) and spleen (SPL) could induce different responses of naive CD4+ T cells to varying doses of antigen by using a co-culture system of DCs and T cells. DCs from each tissue induced IL-4 secretion from naive CD4+T cells in the presence of low dose antigenic peptide, and induced IFN-γ production at high doses of antigen. When purified CD11c+/B220? DCs were used, MLN-derived DCs induced a higher amount of IFN-γ secretion from naive CD4+ T cells, compared with SPL-derived DCs. We could not detect large differences in the expressions of costimulatory molecules on the surface of these two populations of DCs. On the other hand, we found that large amounts of IL-12 were secreted from MLN DCs in an antigen dose-dependent fashion. In conclusion, DCs from SPL, MLN and PP can induce the production of both IL-4 and IFN-γ from naive CD4+ T cells, depending on antigen dose. MLN-derived CD11c+/B220? DCs induce higher IFN-γ production from naive CD4+ T cells than SPL-derived DCs, through efficient IL-12 secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号