首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The identification and quantification of specific organisms in mixed microbial communities often relies on the ability to design oligonucleotide probes and primers with high specificity and sensitivity. The design of these oligonucleotides (or “oligos” for short) shares many of the same principles in spite of their widely divergent applications. Three common molecular biology technologies that require oligonucleotide design are polymerase chain reaction (PCR), fluorescence in situ hybridization (FISH), and DNA microarrays. This article reviews techniques and software available for the design and optimization of oligos with the goal of targeting a specific group of organisms within mixed microbial communities. Strategies for enhancing specificity without compromising sensitivity are described, as well as design tools well suited for this purpose.  相似文献   

2.
DNA microarrays with unmodified oligonucleotides are a cost-effective alternative to cDNA microarrays. This study examined how purity, length, homology and GC content of the oligonucleotide probes influence the sensitivity and specificity of the method using cyanobacterial genes. Oligonucleotide purification by high pressure liquid chromatography was omitted without significant reduction in hybridization sensitivity. For two of three genes tested, a reduction in oligonucleotide length did not reduce hybridization sensitivity, and maximum sensitivity was achieved with probes that were 45 nt long. Oligonucleotide probes with 相似文献   

3.
Selection of optimal DNA oligos for gene expression arrays.   总被引:7,自引:0,他引:7  
MOTIVATION: High density DNA oligo microarrays are widely used in biomedical research. Selection of optimal DNA oligos that are deposited on the microarrays is critical. Based on sequence information and hybridization free energy, we developed a new algorithm to select optimal short (20-25 bases) or long (50 or 70 bases) oligos from genes or open reading frames (ORFs) and predict their hybridization behavior. Having optimized probes for each gene is valuable for two reasons. By minimizing background hybridization they provide more accurate determinations of true expression levels. Having optimum probes minimizes the number of probes needed per gene, thereby decreasing the cost of each microarray, raising the number of genes on each chip and increasing its usage. RESULTS: In this paper we describe algorithms to optimize the selection of specific probes for each gene in an entire genome. The criteria for truly optimum probes are easily stated but they are not computable at all levels currently. We have developed an heuristic approach that is efficiently computable at all levels and should provide a good approximation to the true optimum set. We have run the program on the complete genomes for several model organisms and deposited the results in a database that is available on-line (http://ural.wustl.edu/~lif/probe.pl). AVAILABILITY: The program is available upon request.  相似文献   

4.
Despite the great popularity and potential of microarrays, their use for research and clinical applications is still hampered by lengthy and costly design and optimization processes, mainly because the technology relies on the end point measurement of hybridization. Thus, the ability to monitor many hybridization events on a standard microarray slide in real time would greatly expand the use and benefit of this technology, as it would give access to better prediction of probe performance and improved optimization of hybridization parameters. Although real-time hybridization and thermal denaturation measurements have been reported, a complete walk-away system compatible with the standard format of microarrays is still unavailable. To address this issue, we have designed a biochip tool that combines a hybridization station with active mixing capability and temperature control together with a fluorescence reader in a single compact benchtop instrument. This integrated live hybridization machine (LHM) allows measuring in real time the hybridization of target DNA to thousands of probes simultaneously and provides excellent levels of detection and superior sequence discrimination. Here we show on an environmental single nucleotide polymorphism (SNP) model system that the LHM enables a variety of experiments unachievable with conventional biochip tools.  相似文献   

5.
We have developed DNA microarrays containing stem–loop DNA probes with short single-stranded overhangs immobilized on a Packard HydroGel chip, a 3-dimensional porous gel substrate. Microarrays were fabricated by immobilizing self-complementary single-stranded oligonucleotides, which adopt a partially duplex structure upon denaturing and re-annealing. Hybridization of single-stranded DNA targets to such arrays is enhanced by contiguous stacking interactions with stem–loop probes and is highly sequence specific. Subsequent enzymatic ligation of the targets to the probes followed by stringent washing further enhances the mismatched base discrimination. We demonstrate here that these microarrays provide excellent specificity with signal-to-background ratios of from 10- to 300-fold. In a comparative study, we demonstrated that HydroGel arrays display 10–30 times higher hybridization signals than some solid surface DNA microarrays. Using Sanger sequencing reactions, we have also developed a method for preparing nested 3′-deletion sets from a target and evaluated the use of stem–loop DNA arrays for detecting p53 mutations in the deletion set. The stem–loop DNA array format is simple, robust and flexible in design, thus it is potentially useful in various DNA diagnostic tests.  相似文献   

6.
7.
Synthetic DNA probes attached to microarrays usually range in length from 25 to 70 nucleotides. There is a compromise between short probes with lower sensitivity, which can be accurately synthesized in higher yields, and long probes with greater sensitivity but lower synthesis yields. Described here are microarrays printed with spots containing a mixture of two short probes, each designed to hybridize at noncontiguous sites in the same targeted sequence. We have shown that, for a printed microarray, mixed probe spots containing a pair of 30mers show significantly greater hybridization than spots containing a single 30mer and can approach the amount of hybridization to spots containing a 60mer or a 70mer. These spots with mixed oligonucleotide probes display cooperative hybridization signals greater than those that can be achieved by either probe alone. Both the higher synthesis yields of short probes and the greater sensitivity of long oligonucleotides can be utilized. This strategy provides new design options for microarray hybridization assays to detect RNA abundance, RNA splice variants, or sequence polymorphisms.  相似文献   

8.
We have demonstrated that the dynamics of nucleic acid hybridization in microarrays depend on the physical structure of immobilized probes. We have immobilized oligonucleotide-3'-phosphates with and without stem-loop structure on epoxylated glass surface, followed by hybridization under different conditions, viz., hybridization buffer, pH condition, temperature and ionic strength. In a comparative study, we have established that array constructed using probes with stem-loop structure displayed approximately 2.2 times higher hybridization signals than the probes without it. The stem-loop DNA array format is simple and flexible in design and thus potentially useful in various DNA diagnostic tests.  相似文献   

9.
10.
We describe here a new method for highly efficient detection of microRNAs by northern blot analysis using LNA (locked nucleic acid)-modified oligonucleotides. In order to exploit the improved hybridization properties of LNA with their target RNA molecules, we designed several LNA-modified oligonucleotide probes for detection of different microRNAs in animals and plants. By modifying DNA oligonucleotides with LNAs using a design, in which every third nucleotide position was substituted by LNA, we could use the probes in northern blot analysis employing standard end-labelling techniques and hybridization conditions. The sensitivity in detecting mature microRNAs by northern blots was increased by at least 10-fold compared to DNA probes, while simultaneously being highly specific, as demonstrated by the use of different single and double mismatched LNA probes. Besides being highly efficient as northern probes, the same LNA-modified oligonucleotide probes would also be useful for miRNA in situ hybridization and miRNA expression profiling by LNA oligonucleotide microarrays.  相似文献   

11.
We have developed DNA microarrays containing stem-loop DNA probes with short single-stranded overhangs immobilized on a Packard HydroGel chip, a 3-dimensional porous gel substrate. Microarrays were fabricated by immobilizing self-complementary single-stranded oligonucleotides, which adopt a partially duplex structure upon denaturing and re-annealing. Hybridization of single-stranded DNA targets to such arrays is enhanced by contiguous stacking interactions with stem-loop probes and is highly sequence specific. Subsequent enzymatic ligation of the targets to the probes followed by stringent washing further enhances the mismatched base discrimination. We demonstrate here that these microarrays provide excellent specificity with signal-to-background ratios of from 10- to 300-fold. In a comparative study, we demonstrated that HydroGel arrays display 10-30 times higher hybridization signals than some solid surface DNA microarrays. Using Sanger sequencing reactions, we have also developed a method for preparing nested 3'-deletion sets from a target and evaluated the use of stem-loop DNA arrays for detecting p53 mutations in the deletion set. The stem-loop DNA array format is simple, robust and flexible in design, thus it is potentially useful in various DNA diagnostic tests.  相似文献   

12.
A key issue in applications of short oligonucleotide-based microarrays is how to design specific probes with high sensitivity. Some details of the factors affecting microarray hybridization remain unclear, hampering a reliable quantification of target nucleic acids. We have evaluated the effect of the position of the fluorescent label [position of label (POL)] relative to the probe-target duplex on the signal output of oligonucleotide microarrays. End-labelled single-stranded DNA targets of different lengths were used for hybridization with perfect-match oligonucleotide probe sets targeting different positions of the same molecule. Hybridization results illustrated that probes targeting the labelled terminus of the target showed significantly higher signals than probes targeting other regions. This effect was independent of the target gene, the fluorophore and the slide surface chemistry. Comparison of microarray signal patterns of fluorescently end-labelled, fluorescently internally random-labelled and radioactively end-labelled target-DNAs with the same set of oligonucleotide probes identified POL as a critical factor affecting signal intensity rather than binding efficiency. Our observations define a novel determinant for large differences of signal intensities. Application of the POL effect may contribute to better probe design and data interpretation in microarray applications.  相似文献   

13.
14.
Microarrays have been used extensively in gene expression profiling and genotyping studies. To reduce the high cost and enhance the consistency of microarray experiments, it is often desirable to strip and reuse microarray slides. Our genome-wide analysis of microRNA expression involves the hybridization of fluorescently labeled nucleic acids to custom-made, spotted DNA microarrays based on GAPSII-coated slides. We describe here a simple and effective method to regenerate such custom microarrays that uses a very low-salt buffer to remove labeled nucleic acids from microarrays. Slides can be stripped and reused multiple times without significantly compromising data quality. Moreover, our analyses of the performance of regenerated slides identifies parameters that influence the attachment of oligonucleotide probes to GAPSII slides, shedding light on the interactions between DNA and the microarray surface and suggesting ways in which to improve the design of oligonucleotide probes.  相似文献   

15.
16.
17.
Microarrays have rapidly become an indispensable tool for gene analysis. Microarray experiments can be cost prohibitive, however, largely due to the price of the arrays themselves. Whilst different methods for stripping filter arrays on membranes have been established, only very few protocols are published for thermal and chemical stripping of microarrays on glass. Most of these protocols for stripping microarrays on glass were developed in combination with specific surface chemistry and different coatings for covalently immobilizing presynthesized DNA in a deposition process. We have developed a method for stripping commercial in situ microarrays using a multi-step procedure. We present a method that uses mild chemical degradation complemented by enzymatic treatment. We took advantage of the differences in biochemical properties of covalently linked DNA oligonucleotides on in situ synthesized microarrays and the antisense cRNA hybridization probes. The success of stripping protocols for microarrays on glass was critically dependent on the type of arrays, the nature of sample used for hybridization, as well as hybridization and washing conditions. The protocol employs alkali hydrolysis of the cRNA, several enzymatic degradation steps using RNAses and Proteinase K, combined with appropriate washing steps. Stripped arrays were rehybridized using the same protocols as for new microarrays. The stripping method was validated with microarrays from different suppliers and rehybridization of stripped in situ arrays yielded comparable results to hybridizations done on unused, new arrays with no significant loss in precision or accuracy. We show that stripping of commercial in situ arrays is feasible and that reuse of stripped arrays gave similar results compared to unused ones. This was true even for biological samples that show only slight differences in their expression profiles. Our analyses indicate that the stripping procedure does not significantly influence data quality derived from post-primary hybridizations. The method is robust, easy to perform, inexpensive, and results after reuse are of comparable accuracy to new arrays.  相似文献   

18.
The use of ordered, high-aspect ratio nanopillar arrays on the surface of silicon-based chips to enhance signal intensity in DNA microarrays is reported. These nanopillars consisting either of a single silicon dioxide substrate or a dual silicon/silicon dioxide substrate are fabricated using deep-UV lithography followed by reactive ion etching. These pillar type arrays provide a three-dimensional high surface-density platform that increases the immobilization capacity of captured probes, enhances target accessibility and reduces background noise interference in DNA microarrays, leading to improved signal-to-noise ratios, sensitivity and specificity. Consequently, it was found that the use of such nanopillars enhanced the hybridization signals by up to seven times as compared to silicon dioxide thin film substrates. In addition, hybridization of synthetic targets to capture probes that contained a single-base variation showed that the perfect matched duplex signals on dual-substrate nanopillars can be up to 23 times higher than the mismatched duplex signals, allowing the targets to be unambiguously identified. These results suggest that the nanopillars, particularly the dual-substrate pillars, are able to enhance the hybridization signals and discrimination power in nucleic acids-based detection, providing an alternative platform for improving the performance of DNA microarrays.  相似文献   

19.
Oligonucleotide microarrays offer the potential to efficiently test for multiple organisms, an excellent feature for surveillance applications. Among these, resequencing microarrays are of particular interest, as they possess additional unique capabilities to track pathogens’ genetic variations and perform detailed discrimination of closely related organisms. However, this potential can only be realized if the costs of developing the detection microarray are kept at a manageable level. Selection and verification of the probes are key factors affecting microarray design costs that can be reduced through the development and use of in silico modeling. Models created for other types of microarrays do not meet all the required criteria for this type of microarray. We describe here in silico methods for designing resequencing microarrays targeted for multiple organism detection. The model development presented here has focused on accurate base-call prediction in regions that are applicable to resequencing microarrays designed for multiple organism detection, a variation from other uses of a predictive model in which perfect prediction of all hybridization events is necessary. The model will assist in simplifying the design of resequencing microarrays and in reduction of the time and costs required for their development for new applications.  相似文献   

20.
Incomplete binding, saturation, and cross-hybridization between partially complementary strands complicate the parallel detection of nucleic acids via DNA microarrays. Treating the competing equilibria governing binding to microarrays requires computational tools. We have developed the web-based program ChipCheckII that calculates total hybridization matrices for target strands interacting with probes on small DNA microarrays. The program can be used to compute the extent of cross-hybridization and other phenomena affecting fidelity of detection based on sequences, quantities of strands, and hybridization conditions as inputs. Enthalpy and entropy of duplex formation are generated locally with UNAfold, including those for complexes that are partially matched. Simulated binding versus temperature curves for portions of a commercial genome chip demonstrate the extent to which cross-hybridization can complicate DNA detection. ChipCheckII is expected to aid nucleic acid chemists in developing high fidelity DNA microarrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号