首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among methanogens, only 2 genera, Methanosaeta and Methanosarcina, are known to contribute to methanogenesis from acetate, and Methanosaeta is a specialist that uses acetate specifically. However, Methanosaeta strains so far have mainly been isolated from anaerobic digesters, despite the fact that it is widespread, not only in anaerobic methanogenic reactors and freshwater environments, but also in marine environments, based upon extensive 16S rRNA gene-cloning analyses. In this study, we isolated an aceticlastic methanogen, designated strain 03d30q(T), from a tidal flat sediment. Phylogenetic analyses based on 16S rRNA and mcrA genes revealed that the isolate belongs to the genus Methanosaeta. Unlike the other known Methanosaeta species, this isolate grows at Na(+) concentrations of 0.20 to 0.80 M, with an optimum concentration of 0.28 M. Quantitative estimation using real-time PCR detected the 16S rRNA gene of the genus Methanosaeta in the marine sediment, and relative abundance ranged from 3.9% to 11.8% of the total archaeal 16S rRNA genes. In addition, the number of Methanosaeta organisms increased with increasing depth and was much higher than that of Methanosarcina organisms, suggesting that aceticlastic methanogens contribute to acetate metabolism to a greater extent than previously thought in marine environments, where sulfate-reducing acetate oxidation prevails. This is the first report on marine Methanosaeta species, and based on phylogenetic and characteristic studies, the name "Methanosaeta pelagica" sp. nov. is proposed for this novel species, with type strain 03d30q.  相似文献   

2.
The isotope enrichment factors (epsilon) in Methanosaeta concilii and in a lake sediment, where acetate was consumed only by Methanosaeta spp., were clearly less negative than the epsilon usually observed for Methanosarcina spp. The fraction of methane produced from acetate in the sediment, as determined by using stable isotope signatures, was 10 to 15% lower when the appropriate epsilon of Methanosaeta spp. was used.  相似文献   

3.
竹节状甲烷鬃菌(Methanosaeta harundinacea)6Ac是本实验室分离自厌氧颗粒污泥中的甲烷古菌新种。该菌具有短杆(3μm-5μm)和长链状(>200μm)两种细胞形态,且与细胞密度相关,暗示该菌可能存在群感效应调控的细胞形态变化。【目的】验证该菌存在群感效应信号分子并与细胞形态变化相关。【方法】用高丝氨酸内酯指示菌Agrobacterium tumefaciens NTL4检测菌株6Ac的培养液,并用购买的高丝氨酸内酯标准品加入短杆菌株6Ac检测形态变化。【结果】菌株6Ac的培养液中含有高丝氨酸内酯类物质。实验证明化学合成的高丝氨酸内酯N-(β-酮基)辛酰高丝氨酸内酯能够促进竹节状甲烷鬃菌的长链细胞形成。而且在马氏甲烷八叠球菌(Methanosarcina mazei)、热自养甲烷杆菌(Methanothermobacter thermautotrophicus)和甲酸甲烷杆菌(Methanobacterium formicicum)的培养液中也检测到了高丝氨酸内酯。【结论】多种甲烷古菌可以产生高丝氨酸内酯类物质,并可能以此类物质作为群感效应的信号分子。  相似文献   

4.
Methanosaeta,the forgotten methanogen?   总被引:3,自引:0,他引:3  
Although the aceticlastic methanoarchaea Methanosarcina and Methanosaeta employ different enzymes to catalyze the first step of aceticlastic methanogenesis, it has long been assumed that the remainder of the pathway was the same. Analysis of the recently completed genome sequence of Methanosaeta thermophila confirms that the majority of core steps of the pathway are similar in both genera, but striking differences have been discovered in electron transfer and energy conservation. In addition, the presence of genes encoding enzymes for the CO(2) reduction pathway in the Msa. thermophila genome suggests the possibility that Methanosaeta might be more metabolically diverse than previously thought. Thus, genome analysis of Msa. thermophila presents new research avenues for this forgotten methanogen and reminds us of the questions that still remain unanswered about aceticlastic methanogenesis in both Methanosaeta and Methanosarcina.  相似文献   

5.
A BSTRACTTo evaluate the role of Methanosaeta spp. in a variety of anaerobic environments, small-subunit rRNA targeted oligonucleotide hybridization probes were developed and experimentally characterized. The probes were designed to be genus specific for Methanosaeta and species specific for Methanosaeta concilii and Methanosaeta thermophila. The temperature of dissociation was determined for each probe. Probe specificities were determined using a diverse collection of Archaea and through an evaluation of probe nesting using samples from a variety of anaerobic bioreactors. Cell fixation and hybridization conditions for fluorescence in situ hybridizations were also evaluated. Although permeability of methanogens was variable, M. concilii cells could be permeabilized using a range of paraformaldehyde and ethanol based fixation conditions. Using the newly designed probes together with previously designed probes for methanogens, it was determined that Methanosaeta spp. were the dominant aceticlastic methanogens in a variety of anaerobic bioreactors when acetate concentrations were low. Their levels were higher in bioreactors with granular sludge than in those with flocculent sludge. In lab-scale upflow anaerobic sludge blanket reactors, the levels of M. concilii rRNA were as high as 30% of the total rRNA.  相似文献   

6.
A simple method for the isolation of axenic cultures of members of the obligately acetotrophic methanogenic genus Methanosaeta is described. To overcome the competitive advantage obtained by faster growing acetate-utilizing Methanosarcina spp. in batch enrichment cultures, acetone and isopropanol are used as the growth substrates for the enrichment step. Acetone- and isopropanol-utilizing bacteria slowly ferment these substrates to acetate, which allows Methanosaeta spp. to maintain the acetate concentration at levels below the threshold required for growth of Methanosarcina spp. These enrichments eventually develop dense populations of Methanosaeta spp., which can then be separated from contaminating microorganisms to yield axenic cultures.  相似文献   

7.
Zhu J  Zheng H  Ai G  Zhang G  Liu D  Liu X  Dong X 《PloS one》2012,7(5):e36756
In this work, we report the complete genome sequence of an obligate aceticlastic methanogen, Methanosaeta harundinacea 6Ac. Genome comparison indicated that the three cultured Methanosaeta spp., M. thermophila, M. concilii and M. harundinacea 6Ac, each carry an entire suite of genes encoding the proteins involved in the methyl-group oxidation pathway, a pathway whose function is not well documented in the obligately aceticlastic methanogens. Phylogenetic analysis showed that the methyl-group oxidation-involving proteins, Fwd, Mtd, Mch, and Mer from Methanosaeta strains cluster with the methylotrophic methanogens, and were not closely related to those from the hydrogenotrophic methanogens. Quantitative PCR detected the expression of all genes for this pathway, albeit ten times lower than the genes for aceticlastic methanogenesis in strain 6Ac. Western blots also revealed the expression of fwd and mch, genes involved in methyl-group oxidation. Moreover, (13)C-labeling experiments suggested that the Methanosaeta strains might use the pathway as a methyl oxidation shunt during the aceticlastic metabolism. Because the mch mutants of Methanosarcina barkeri or M. acetivorans failed to grow on acetate, we suggest that Methanosaeta may use methyl-group oxidation pathway to generate reducing equivalents, possibly for biomass synthesis. An fpo operon, which encodes an electron transport complex for the reduction of CoM-CoB heterodisulfide, was found in the three genomes of the Methanosaeta strains. However, an incomplete protein complex lacking the FpoF subunit was predicted, as the gene for this protein was absent. Thus, F(420)H(2) was predicted not to serve as the electron donor. In addition, two gene clusters encoding the two types of heterodisulfide reductase (Hdr), hdrABC, and hdrED, respectively, were found in the three Methanosaeta genomes. Quantitative PCR determined that the expression of hdrED was about ten times higher than hdrABC, suggesting that hdrED plays a major role in aceticlastic methanogenesis.  相似文献   

8.
A reductionist ecological approach of using a model genus was adopted in order to understand how microbial community structure is driven by metabolic properties. The distribution along an estuarine gradient of the highly specialised genus Methanosaeta was investigated and compared to the previously determined distribution of the more metabolically flexible Desulfobulbus. Methanosaeta genotypic distribution along the Colne estuary (Essex, UK) was determined by DNA- and RNA-based denaturing gradient gel electrophoresis and 16S rRNA gene sequence analyses. Methanosaeta distribution was monotonic, with a consistently diverse community and no apparent niche partitioning either in DNA or RNA analyses. This distribution pattern contrasts markedly with the previously described niche partitioning and sympatric differentiation of the model generalist, Desulfobulbus. To explain this difference, it is hypothesised that Methanosaeta's strict metabolic needs limit its adaptation potential, thus populations do not partition into spatially distinct groups and so do not appear to be constrained by gross environmental factors such as salinity. Thus, at least for these two model genera, it appears that metabolic flexibility may be an important factor in spatial distribution and this may be applicable to other microbes.  相似文献   

9.
At a sea-based, solid waste disposal site, methanogenic organisms were quantified by molecular approaches. The samples collected for analysis were from anaerobic leachate of the landfill site. When the DNA extracted from the leachate was examined by a quantitative PCR method using domain-specific 16S rDNA primers, archaeal DNA represented 2-3% of the total extracted DNA. On the basis of cloning and sequence comparison of the archaeal PCR products, more than half of the sequences belonged to Euryarchaeota, particularly relatives of the genus Methanosaeta. The cloning analysis suggested that the majority of methane emitted from the landfill site originated from the acetate-utilizing Methanosaeta.  相似文献   

10.
The effect of microbial composition on the methanogenic degradation of cellulose was studied using two lines of anaerobic cellulose-fermenting methanogenic microbial cultures at two different temperatures: that at 15 degrees C being dominated by Methanosaeta and that at 30 degrees C by Methanosarcina. In both cultures, CH4 production and acetate consumption were completely inhibited by either 2-bromoethanesulfonate or chloroform, whereas H2 consumption was only inhibited by chloroform, suggesting that homoacetogens utilized H2 concomitantly with methanogens. Hydrogen was the intermediate that was consumed first, while acetate continued to accumulate. At 15 degrees C, acetoclastic methanogenesis smoothly followed H2-dependent CH4 production. Fluorescence in situ hybridization showed that populations of Methanosaeta steadily increased with time from 5 to 25% of total cell counts. At 30 degrees C, two phases of CH4 production were obtained, with acetate consumed after the abrupt increase of Methanosarcina from 0 to 45% of total cell counts. Whereas populations of Methanosaeta were able to adapt after transfer from 15 to 30 degrees C, those of Methanosarcina were not, irrespective of during which phase the cultures were transferred from 30 degrees C to 15 degrees C. Our results thus show that the community structure of methanogens indeed affects the function of a cellulose-fermenting community with respect to temperature response.  相似文献   

11.
An endospore-forming, butyrate-degrading bacterium (strain BH) was grown on butyrate in monoxenic coculture with a methanogen. The culture formed dense aggregates when Methanobacterium formicicum was the methanogenic partner, but the culture was turbid when Methanospirillum hungatei was the partner. In contrast, a propionate-degrading, lemon-shaped bacterium (strain PT) did not form aggregates with Methanobacterium formicicum unless an acetate-degrading Methanosaeta sp. was also included in the culture. Fatty acid-degrading methanogenic granules were formed in a laboratory-scale upflow reactor at 35(deg)C fed with a medium containing a mixture of acetate, propionate, and butyrate by using defined cultures of Methanobacterium formicicum T1N, Methanosaeta sp. strain M7, Methanosarcina mazei T18, propionate-degrading strain PT, and butyrate-degrading strain BH. The maximum substrate conversion rates of these granules for acetate, propionate, and butyrate were 43, 9, and 17 mmol/g (dry weight)/day, respectively. The average size of the granules was about 1 mm. Electron microscopic observation of the granules revealed that the cells of Methanobacterium formicicum, Methanosaeta sp., butyrate-degrading, and propionate-degrading bacteria were dispersed in the granules. Methanosarcina mazei existed inside the granules as aggregates of its own cells, which were associated with the bulk of the granules. The interaction of different species in aggregate formation and granule formation is discussed in relation to polymer formation of the cell surface.  相似文献   

12.
13.
Hydrogen production was studied in four species of methanogens (Methanothermobacter marburgensis, Methanosaeta thermophila, Methanosarcina barkeri, and Methanosaeta concilii) under conditions of low (sub-nanomolar) ambient hydrogen concentration using a specially designed culture apparatus. Transient hydrogen production was observed and quantified for each species studied. Methane was excluded as the electron source, as was all organic material added during growth of the cultures (acetate, yeast extract, peptone). Hydrogen production showed a strong temperature dependence, and production ceased at temperatures below the growth range of the organisms. Addition of polysulfides to the cultures greatly decreased hydrogen production. The addition of bromoethanesulfonic acid had little influence on hydrogen production. These experiments demonstrate that some methanogens produce excess reducing equivalents during growth and convert them to hydrogen when the ambient hydrogen concentration becomes low. The lack of sustained hydrogen production by the cultures in the presence of methane provides evidence against "reverse methanogenesis" as the mechanism for anaerobic methane oxidation.  相似文献   

14.
The distribution and activity of communities of sulfate-reducing bacteria (SRB) and methanogenic archaea in two contrasting Antarctic sediments were investigated. Methanogenesis dominated in freshwater Lake Heywood, while sulfate reduction dominated in marine Shallow Bay. Slurry experiments indicated that 90% of the methanogenesis in Lake Heywood was acetoclastic. This finding was supported by the limited diversity of clones detected in a Lake Heywood archaeal clone library, in which most clones were closely related to the obligate acetate-utilizing Methanosaeta concilii. The Shallow Bay archaeal clone library contained clones related to the C(1)-utilizing Methanolobus and Methanococcoides and the H(2)-utilizing Methanogenium: Oligonucleotide probing of RNA extracted directly from sediment indicated that archaea represented 34% of the total prokaryotic signal in Lake Heywood and that Methanosaeta was a major component (13.2%) of this signal. Archaea represented only 0.2% of the total prokaryotic signal in RNA extracted from Shallow Bay sediments. In the Shallow Bay bacterial clone library, 10.3% of the clones were SRB-like, related to Desulfotalea/Desulforhopalus, Desulfofaba, Desulfosarcina, and Desulfobacter as well as to the sulfur and metal oxidizers comprising the Desulfuromonas cluster. Oligonucleotide probes for specific SRB clusters indicated that SRB represented 14.7% of the total prokaryotic signal, with Desulfotalea/Desulforhopalus being the dominant SRB group (10.7% of the total prokaryotic signal) in the Shallow Bay sediments; these results support previous results obtained for Arctic sediments. Methanosaeta and Desulfotalea/Desulforhopalus appear to be important in Lake Heywood and Shallow Bay, respectively, and may be globally important in permanently low-temperature sediments.  相似文献   

15.
Abstract A highly sensitive method for the quantification of methanogens in anaerobic digestor sludges was developed, based on an analysis of ether-linked glycerolipids. Core lipids were prepared from total lipids by HF treatment and mild methanolysis, and these core lipids were quantified as the corresponding 9-anthroyl derivatives by high-performance liquid chromatography with fluorescence detection. The amounts, in terms of cell carbon content, of Methanosaeta and Methanosarcina were proportional to the amounts of α-hydroxyarchaeol and β-hydroxyarchaeol, respectively. Moreover, the total amount of core lipids was well correlated with the cell mass of aceticlastic and H2/CO2-consuming methanogens. The limit of detection for Methanosaeta concilii was 17 ng of cell carbon when the signal/noise ratio was 3. This method allowed us to quantitate aceticlastic methanogens with high accuracy and to make a rough estimate of total methanogenic cells without any interference by the multifarious impurities that are present in anaerobic sludges. These results suggest that the present method will be a useful tool for investigations of methanogenic ecosystems.  相似文献   

16.
Two highly enriched cultures containing Dehalococcoides spp. were used to study the effect of aceticlastic methanogens on reductive vinyl chloride (VC) dechlorination. In terms of aceticlastic methanogens, one culture was dominated by Methanosaeta, while the other culture was dominated by Methanosarcina, as determined by fluorescence in situ hybridization. Cultures amended with 2-bromoethanesulfonate (BES), an efficient inhibitor of methanogens, exhibited slow VC dechlorination when grown on acetate and VC. Methanogenic cultures dominated by Methanosaeta had no impact on dechlorination rates, compared to BES-amended controls. In contrast, methanogenic cultures dominated by Methanosarcina displayed up to sevenfold-higher rates of VC dechlorination than their BES-amended counterparts. Methanosarcina-dominated cultures converted a higher percentage of [2-(14)C]acetate to (14)CO(2) when concomitant VC dechlorination took place, compared to nondechlorinating controls. Respiratory indices increased from 0.12 in nondechlorinating cultures to 0.51 in actively dechlorinating cultures. During VC dechlorination, aqueous hydrogen (H(2)) concentrations dropped to 0.3 to 0.5 nM. However, upon complete VC consumption, H(2) levels increased by a factor of 10 to 100, indicating active hydrogen production from acetate oxidation. This process was thermodynamically favorable by means of the extremely low H(2) levels during dechlorination. VC degradation in nonmethanogenic cultures was not inhibited by BES but was limited by the availability of H(2) as electron donor, in cultures both with and without BES. These findings all indicate that Methanosarcina (but not Methanosaeta), while cleaving acetate to methane, simultaneously oxidizes acetate to CO(2) plus H(2), driving hydrogenotrophic dehalorespiration of VC to ethene by Dehalococcoides.  相似文献   

17.
The obligate aceticlastic methanogen Methanosaeta thermophila uses a membrane-bound ferredoxin:heterodisulfide oxidoreductase system for energy conservation. We propose that the system is composed of a truncated form of the F(420)H(2) dehydrogenase, methanophenazine, and the heterodisulfide reductase. Hence, the electron transport chain is distinct from those of well-studied Methanosarcina species.  相似文献   

18.
The population of filamentous acetate-utilizing methanogens in paddy field soils was 2.0 x 10(4) MPN/g dry soil in the submerged condition. They were able to form colonies in a deep agar medium, but not in a roll tube. Filamentous acetate-utilizing methanogens isolated from Kanagi, Japan (strain K-5) and Tsukuba, Japan (strain T-3) were divided into two types based on length of filaments. One type, strain K-5, formed a short chain which was dispersed easily by weak shaking. The other type, strain T-3, formed a long chain, which formed cotton-like flocs and was not dispersed by weak shaking. They had sheaths composed of a pair of adjacent membranes on the outside of the cell membranes. The 16S rRNA gene similarities of strain T-3 and K-5 to Methanosaeta concilii strain Opfikon were 100% and 99.5% respectively. Filamentous acetate-utilizing methanogens were also isolated from paddy field soils in various other regions of Japan. Our results suggest that Methanosaeta is universal in paddy soils and that it plays an important role in methane production from acetate.  相似文献   

19.
Methane is produced by various methanogenic bacteria present in upflow anaerobic sludge blanket (UASB) bioreactors. Methane can be used to predict and improve UASB bioreactor efficiency. The methanogen population in the granules can be influenced by the composition of the substrate. The aim of this study was to fingerprint and identify the methanogens present in three different types of UASB granules that had been used to treat winery, brewery and peach-lye canning effluents. This was done using polymerase chain reaction (PCR)-based denaturing gradient gel electrophoresis (DGGE) and DNA sequence analysis. The DGGE fingerprints obtained from the methanogen reference cultures of Methanosaeta concilii, Methanosaeta thermophila, Methanosarcina barkeri, Methanosarcina mazeii and Methanobacterium formicicum were compared to the DGGE profiles of the Archaea in the different granules. The positions of the DGGE bands that did not correspond well to the bands of the known species were sequenced and compared to sequences available on GenBank using the Blastn search option. The aligned DNA sequences were used to construct a phylogenetic tree. Based on the data obtained, a DGGE marker was constructed which was used to provide a quick method to identify the Archaeal members of the microbial consortium in UASB granules.  相似文献   

20.
颗粒污泥形成快、抗冲击能力强、悬浮性好是新型高浓度有机废水厌氧处理系统的重要特征。为了研究颗粒污泥中古菌组成多样性及其功能特征, 采集活性污泥样品, 提取总基因组DNA, 应用PCR-DGGE和16S rDNA克隆测序技术对系统内古菌群落进行研究。结果表明: 古菌克隆文库中克隆子的近缘种归属于Methanosaeta、Methanosarcina、Methanobacterium和Methanomethylovorans 4个类群, 所占文库容量比例依次为58.2%、23.6%、12.7%和3.6%, 1个克隆子未能找到相似菌株, 占1.8%。系统发育分析找到了未知克隆子C10、C11、C13和C19的相似菌株FJ618821、AB479397、AJ244290和AB447878, 并明确相应的分类地位。古菌类群以乙酸利用型Methanosaeta、Methanosarcina为主, 说明甲烷形成过程以乙酸途径为主。中间代谢产物VFAs组成与不同产甲烷菌代谢功能分析的结果证明了古菌群落组成多样性与其代谢功能的对应关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号