首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In most female moths, pheromone biosynthesis activating neuropeptide (PBAN) regulates sex pheromone production by stimulating an influx of extracellular Ca(2+). Little is known about the plasma membrane channel or how the PBAN stimulus is communicated to the channel. Fluorescent Ca(2+) imaging techniques confirmed PBAN-induced Ca(2+) influx in the silkworm, Bombyx mori, and showed that the PBAN response is reduced with repeated stimulation. Compounds known to impact Ca(2+) signaling were examined for their effects on sex pheromone production. These experiments demonstrated that the PBAN signal is likely mediated by a store-operated channel (SOC). SOC blockers, SKF-96365 and 2-aminoethoxydiphenyl borate, abolished sex pheromone production, as did flufenamic acid, a blocker of transient receptor potential (TRP) channels. Thapsigargin mimicked the pheromonotropic effects of PBAN. Similar results were seen when PBAN-induced lipase activity was assayed. Conversely, 1-oleoyl-2-acetyl-sn-glycerol and arachidonic acid, activators of diacylglycerol-dependent Ca(2+) channels, had no effect on bombykol production.  相似文献   

2.
In most moths, sex pheromone production is regulated by pheromone biosynthesis-activating neuropeptide (PBAN). How the extracellular PBAN signal is turned into a biological response has been the focus of numerous studies. In the classical scheme of signal transduction, activated G proteins relay the extracellular signal to downstream effector molecules such as calcium channels and adenylyl cyclase. The role of calcium in PBAN signaling has been clearly demonstrated, but the possible involvement of cAMP is not as straightforward. While cAMP has been shown to be necessary for PBAN signaling in most heliothine species, there has been no definitive demonstration of its role in Bombyx mori. To address this question, we used degenerate RT-PCR to clone two Gs subunits, designated P50Gs1 and P50Gs2, from B. mori pheromone gland (PG) cDNAs. The two Gs proteins were expressed in all tissues examined and were not up-regulated in accordance with adult eclosion. Even though two bands corresponding to the approximate molecular weights of P50Gs1 and P50Gs2 were detected in PG homogenates, the Gs antagonist, NF449, had no effect on sex pheromone production. Furthermore, no changes in the intracellular cAMP levels were detected following PBAN stimulation.  相似文献   

3.
Du M  Yin X  Zhang S  Zhu B  Song Q  An S 《PloS one》2012,7(2):e31045

Background

Pheromone biosynthesis activating neuropeptide (PBAN) is a neurohormone that regulates sex pheromone synthesis in female moths. Bombyx mori is a model organism that has been used to explore the signal transduction pattern of PBAN, which is mediated by a G-protein coupled receptor (GPCR). Although significant progress has been made in elucidating PBAN-regulated lipolysis that releases the precursor of the sex pheromone, little is known about the molecular components involved in this step. To better elucidate the molecular mechanisms of PBAN-stimulated lipolysis of cytoplasmic lipid droplets (LDs), the associated lipase genes involved in PBAN- regulated sex pheromone biosynthesis were identified using digital gene expression (DGE) and subsequent RNA interference (RNAi).

Results

Three DGE libraries were constructed from pheromone glands (PGs) at different developed stages, namely, 72 hours before eclosion (−72 h), new emergence (0 h) and 72 h after eclosion (72 h), to investigate the gene expression profiles during PG development. The DGE evaluated over 5.6 million clean tags in each PG sample and revealed numerous genes that were differentially expressed at these stages. Most importantly, seven lipases were found to be richly expressed during the key stage of sex pheromone synthesis and release (new emergence). RNAi-mediated knockdown confirmed for the first time that four of these seven lipases play important roles in sex pheromone synthesis.

Conclusion

This study has identified four lipases directly involved in PBAN-stimulated sex pheromone biosynthesis, which improve our understanding of the lipases involved in releasing bombykol precursors from triacylglycerols (TAGs) within the cytoplasmic LDs.  相似文献   

4.
Changes in size and number of cytoplasmic lipid droplets were quantified in the pheromone gland (PG) of Bombyx mori before and after adult eclosion. Two days before eclosion, size and number of droplets are small (diameter is 2-7 microm) and few. The formation and significant proliferation of larger droplets (5-12 microm) take place between 2 days and 1 day before eclosion. From the day of emergence until day 3 a fluctuation in size and number of lipid droplets during the photophase (4h intervals) is observed. The changes are more characteristic and dramatic on the day of emergence and first day, while attenuation of these changes can be observed from the second day and seems to disappear by day 4. Bombykol content, at each respective time, is in good correlation with the observed fluctuation in lipid droplet parameters. Highest bombykol production daily is observed towards the early evening, when lipid droplets are the smallest (2-4 microm) and most numerous. By day 4, however, this regularity also ceases. In 24h old mated females PG cell structure is quite similar to newly emerged ones. In glands of 72 h old decapitated females the formation of 'extra' large lipid droplets is remarkable. In vivo pheromone biosynthesis activating neuropeptide (PBAN) treatment, however, induced the formation of many small droplets, although numerous larger ones also remained. The morphological changes in lipid droplets and cellular dynamics associated with the external signal of PBAN in the PG suggest a storage-pool function of the lipid droplets.  相似文献   

5.
In several moth species sex pheromone production in the pheromone gland is regulated by a neurohormone, pheromone biosynthesis activating neuropeptide (PBAN). In Bombyx mori it is suggested that PBAN, after binding to the cell-surface receptor, primarily activates a plasma membrane receptor-activated Ca2+ channel to increase cytosolic levels of Ca2+, and Ca2+/calmodulin complex directly or indirectly activates a phosphoprotein phosphatase, which in turn elicits activation of acyl CoA reductase (the key enzyme under PBAN control) through dephosphorylation, resulting in pheromone (bombykol) production. The effect of cyclosporin A (CsA) and FK 506, specific inhibitors of calcineurin (phosphoprotein phosphatase 2B) was studied on the sex pheromone production, in B. mori. The in vitro experiments showed that both chemicals exerted a dose-dependent inhibitory action when they were co-incubated with TKYFSPRL amide (Hez-PBAN fragment peptide). Practically, no difference was detected between the two chemicals in the tested doses (0.025-1250 microM). When effects of CsA or FK 506 were studied on cell-free production of bombykol by using microsomal fraction no inhibition was detected. Since microsomal fraction contains the acyl CoA synthetase, the rate-limiting acyl CoA reductase and the precursor, bombykol is produced if supplied with CoA, ATP and NADPH. Thus, the inhibitory action of CsA and FK506 under in vitro conditions should occur before the step of acyl group reduction and the effect is likely to be attributable to the inhibition of calcineurin in the signal transduction cascade mechanism of PBAN, in B. mori. The existence of calcineurin in the pheromone gland by using Western blot analysis is also demonstrated.  相似文献   

6.
Sex pheromones of moths are largely classified into two types based on the presence (Type I) or absence (Type II) of a terminal functional group. While Type-I sex pheromones are synthesized from common fatty acids in the pheromone gland (PG), Type-II sex pheromones are derived from hydrocarbons produced presumably in the oenocytes and transported to the PG via the hemolymph. Recently, a fatty acid transport protein (BmFATP) was identified from the PG of the silkworm Bombyx mori, which produces a Type-I sex pheromone (bombykol). BmFATP was shown to facilitate the uptake of extracellular fatty acids into PG cells for the synthesis of bombykol. To elucidate the presence and function of FATP in the PG of moths that produce Type-II sex pheromones, we explored fatp homologues expressed in the PG of a lichen moth, Eilema japonica, which secretes an alkenyl sex pheromone (Type II). A fatp homologue cloned from E. japonica (Ejfatp) was predominantly expressed in the PG, and its expression is upregulated shortly after eclosion. Functional expression of EjFATP in Escherichia coli enhanced the uptake of long chain fatty acids (C18 and C20), but not pheromone precursor hydrocarbons. To the best of our knowledge, this is the first report of the cloning and functional characterization of a FATP in the PG of a moth producing a Type-II sex pheromone. Although EjFATP is not likely to be involved in the uptake of pheromone precursors in E. japonica, the expression pattern of Ejfatp suggests a role for EjFATP in the PG not directly linked to pheromone biosynthesis.  相似文献   

7.
In Bombyx mori, pheromone-producing cells accumulate a number of lipid droplets in the cytoplasm preceding the production of the sex pheromone, bombykol. The process of lipid droplet formation in the pheromone-producing cells was investigated by using light and electron microscopy. Light microscopy revealed that the lipid droplets appeared from 2 days before adult eclosion and dramatic accumulation took place between 2 days and 1 day before eclosion. Electron microscopical studies revealed that smooth endoplasmic reticulum and numerous vesicles, their sizes being less than 1 microm, were detectable 2 days before eclosion, and some vesicles were fused with mitochondria at this stage. These characteristic changes in the pheromone-producing cells suggest that fatty acyl-CoA synthesis following de novo fatty acid synthesis takes place at this time. Involutions in the basal plasma membrane of the cells occurred throughout the observed period, which were extensive on the day before adult eclosion. Besides extensive basal involutions, immature lipid droplets appeared and then mature fully electron-dense lipid droplets were observed on the day of adult eclosion. These ultrastructural observations, combined with recent physiological studies suggest, that the basal involutions presumably reflect the uptake of lipidic components required for the construction of lipid droplets, the function of which is to store the bombykol precursor and to provide it for bombykol biosynthesis in response to pheromonotropic stimuli by pheromone biosynthesis activating neuropeptide (PBAN).  相似文献   

8.
A method to isolate functional clusters of viable pheromone gland cells of Bombyx mori was developed. The 8th-9th intersegmental invaginated membrane corresponding to the pheromone gland was dissected, trimmed and separated into two distinct layers, the outer and inner layers, by enzymatic digestion with papain. The outer layer mainly consists of cuticle, while the inner layer consists of homogeneous cells with many refractile granules. The solubilized microsome fraction prepared from the inner layer retained the ability to produce bombykol in vitro, whereas the outer layer fraction did not produce bombykol. Moreover, in tissue incubations, the inner layer - but not the outer layer - produced bombykol in response to the pheromonotropic peptide TKYFSPRLamide, ionomycin and calcium ionophore A23187. These results indicate that the inner-layer cells are indeed the pheromone-producing cells, which retain their functional integrity after separation with papain. These cells could be cultured successfully in Grace's medium for at least 5days.The presence or absence of pheromonotropic stimuli prior to dissection greatly influenced the size, number and distribution of refractile granules in the cytoplasm of the pheromone-producing cells. Staining with Nile Red proved that these refractile granules were lipid droplets. When pheromone production was studied under normal conditions or stimulated in decapitated females with pheromone-biosynthesis-activating neuorpeptide (PBAN) charge, the size of lipid droplets observed in the pheromone-producing cells reduced prominently and their number increased dramatically with time. By contrast, when pheromone production was suppressed by decapitation, the size and number of the lipid droplets remained constant. Lipid droplets observed in the pheromone-producing cells could be carriers of pheromone precursors and/or the pheromone bombykol. The present results suggest that the isolated cell preparation can be used for quantitative visualization of the cellular dynamics during pheromone production in B. mori.  相似文献   

9.
10.
Zheng L  Lytle C  Njauw CN  Altstein M  Martins-Green M 《Gene》2007,393(1-2):20-30
In noctuid moths cuticular pigmentation is regulated by the pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family, which also mediates a variety of other functions in moths and other insects. Numerous studies have shown that these neuropeptides exert their functions through activation of the PBAN receptor (PBAN-R), with subsequent Ca(2+) influx, followed by either activation of cAMP or direct activation of downstream kinases. Recently, several PBAN-Rs have been identified, all of which are from the pheromone gland of adult female moths, but evidence shows that functional PK/PBAN-Rs can also be expressed in insect larvae, where they mediate melanization and possibly other functions (e.g., diapause). Here, we identified a gene encoding a G-protein-coupled receptor from the 5th instar larval tissue of the moth Spodoptera littoralis. The cDNA of this gene contains an open reading frame with a length of 1050 nucleotides, which translates to a 350-amino acid, 42-kDa protein that shares 92% amino acid identity with Helicoverpa zea and Helicoverpa armigera PBAN-R, 81% with Bombyx mori PBAN-R and 72% with Plutella xylostella PBAN-R. The S. littoralis PBAN-R gene was stably expressed in NIH3T3 cells and transiently in HEK293 cells. We show that it mediates the dose-dependent PBAN-induced intracellular Ca(2+) response and activation of the MAP kinase via a PKC-dependent but Galphai-independent signaling mechanism. Other PK/PBAN family peptides (pheromonotropin and a C-terminally PBAN-derived peptide PBAN(28-33)NH(2)) also triggered MAP kinase activation. This receptor, together with the previously cloned PBAN-R, may facilitate our understanding of the cell-specific responses and functional diversities of this diverse neuropeptide family.  相似文献   

11.
Many species of female moths produce sex pheromones to attract conspecific males. To date, sex pheromones from more than 570 moth species have been chemically identified. Most moth species utilize Type I pheromones that consist of straight-chain compounds 10-18 carbons in length with a functional group of a primary alcohol, aldehyde, or acetate ester and usually with several double bonds. In contrast, some moth species use unsaturated hydrocarbons or hydrocarbon epoxides, classified as Type II lepidopteran pheromones, as sex pheromones. Studies over the past three decades have demonstrated that female moths usually produce sex pheromones as multi-component blends where the ratio of the individual components is precisely controlled, thus making it possible to generate species-specific pheromone blends. As for the biosynthesis of Type I pheromones, it is well established that they are de novo synthesized in the pheromone gland (PG) through modifications of fatty acid biosynthetic pathways. However, as many of the molecular components within the PG cells (i.e., enzymes, proteins, and small regulatory molecules) have not been functionally characterized, the molecular mechanisms underlying sex pheromone production in PG cells remain poorly understood. To address this, we have recently characterized some of the molecules involved in the biosynthesis of the sex pheromone bombykol in the silkmoth, Bombyx mori. Characterization of these, and other, key molecules will facilitate our understanding of the precise mechanisms underlying lepidopteran sex pheromone production.  相似文献   

12.
13.
Lipolysis, the coordinated catabolism of triacylglycerol (TG) stored in cellular lipid droplets, provides fatty acids, di-, and monoglycerides. These products are important energy substrates, precursors for other lipids, or lipid signaling molecules. Following their discovery by Hollenberg, C.H., Raben, M.S., and Astwood, E.B.(1961) and Vaughan, M., Berger, J.E., and Steinberg, D. (1964), hormone-sensitive lipase (HSL) and monoacylglycerol lipase stayed in the focus of research for three decades. Within the last decade, however, it became evident that the lipolytic pathway is incompletely understood. Studies on the regulation of lipolysis and the characterization of HSL-deficient mice indicated that additional previously unrecognized factors that contribute to fat catabolism must exist. This led to the discovery of the perilipin, adipophilin, Tip47 (PAT) family of lipid droplet binding proteins and the identification of a novel TG hydrolase named adipose triglyceride lipase (ATGL). This review focuses on the importance of ATGL as TG lipase within the “lipolytic machinery” and the current knowledge of molecular mechanisms that regulate ATGL activity.  相似文献   

14.
Lipolysis is an important metabolic pathway controlling energy homeostasis through degradation of triglycerides stored in lipid droplets and release of fatty acids. Lipid droplets of mammalian cells are coated with one or more members of the PAT protein family, which serve important functions in regulating lipolysis. In this study, we investigate the mechanisms by which PAT family members, perilipin A, adipose differentiation-related protein (ADFP), and LSDP5, control lipolysis catalyzed by hormone-sensitive lipase (HSL), a major lipase in adipocytes and several non-adipose cells. We applied fluorescence microscopic tools to analyze proteins in situ in cultured Chinese hamster ovary cells using fluorescence recovery after photobleaching and anisotropy Forster resonance energy transfer. Fluorescence recovery after photobleaching data show that ADFP and LSDP5 exchange between lipid droplet and cytoplasmic pools, whereas perilipin A does not. Differences in protein mobility do not correlate with PAT protein-mediated control of lipolysis catalyzed by HSL or endogenous lipases. Forster resonance energy transfer and co-immunoprecipitation experiments reveal that each of the three PAT proteins bind HSL through interaction of the lipase with amino acids within the highly conserved amino-terminal PAT-1 domain. ADFP and LSDP5 bind HSL under basal conditions, whereas phosphorylation of serine residues within three amino-terminal protein kinase A consensus sequences of perilipin A is required for HSL binding and maximal lipolysis. Finally, protein kinase A-mediated phosphorylation of HSL increases lipolysis in cells expressing ADFP or LSDP5; in contrast, phosphorylation of perilipin A exerts the major control over HSL-mediated lipolysis when perilipin is the main lipid droplet protein.  相似文献   

15.
The enormous capacity of the male silkmoth Bombyx mori in recognizing and discriminating bombykol and bombykal is based on distinct sensory neurons in the antennal sensilla hairs. The hydrophobic pheromonal compounds are supposed to be ferried by soluble pheromone-binding proteins (PBPs) through the sensillum lymph toward the receptors in the dendritic membrane. We have generated stable cell lines expressing the candidate pheromone receptors of B. mori, BmOR-1 or BmOR-3, and assessed their responses to hydrophobic pheromone compounds dissolved by means of dimethyl sulfoxide. BmOR-1-expressing cells were activated by bombykol but also responded to bombykal, whereas cells expressing BmOR-3 responded to bombykal only. In experiments employing the B. mori PBP, no organic solvent was necessary to mediate an activation of BmOR-1 by bombykol, indicating that the PBP solubilizes the hydrophobic compound. Furthermore, the employed PBP selectively mediated a response to bombykol but not to bombykal, supporting a ligand specificity of PBPs. This study provides evidence that both distinct pheromone receptors and PBPs play an important role in insect pheromone recognition.  相似文献   

16.
A cDNA encoding the prohormone of the pheromone biosynthesis activating neuropeptide (PBAN) in the moth Agrotis ipsilon was isolated. The cDNA contains 834 nucleotides, coding for a 193-amino acid protein that exhibits 89% identity with PBAN prohormones of other moths. The prohormone contains five potential peptides belonging to the FXPRL family. The peptide corresponding to the Bombyx mori diapause hormone exhibits an extra residue, and the C-terminal leucine is replaced by an isoleucine, introducing a new type of variability in this family of peptides. Northern blot analysis revealed expression in suboesophagal ganglion complexes. Constitutive heterologous expression of Agi-PBAN cDNA in yeast, using three different antibodies, did not produce PBAN-immunoreactive material.  相似文献   

17.
A mating duration of more than 6 h was necessary to permanently terminate the production of the sex pheromone (bombykol) in the silkworm moth, Bombyx mori L. (Lepidoptera: Bombycidae), although the female formed a bursa copulatrix including a spermatophore and laid fertilized eggs even after mating for only 0.5 h. The 6-h mated female again produced bombykol if given an injection of synthetic pheromonotropic neuropeptide (PBAN), which is known to activate pheromone biosynthesis in a virgin female. Extracts of brain-suboesophageal ganglion (SG) complexes, which were removed from 6- and 24-h mated females, showed strong pheromonotropic activities. These results indicated that the pheromone gland of the mated female maintained its ability to biosynthesize bombykol; however, it could not produce pheromone due to a suppression of PBAN secretion from the SG. Furthermore, bombykol titers did not decrease after mating in females with a transected ventral nerve cord, even after the injection of a spermatophore extract, suggesting that the suppression of PBAN secretion was mediated by a neural signal and not by a substance in the spermatophore. The mated females accumulated (10E, 12Z)-10,12-hexadecadienoic acid, a precursor of bombykol biosynthesis, in their pheromone glands as did decapitated females. © 1996 Wiley-Liss, Inc.  相似文献   

18.
Role of neuropeptides in sex pheromone production in moths   总被引:2,自引:0,他引:2  
Altstein M 《Peptides》2004,25(9):1491-1501
Sex pheromone biosynthesis in many moth species is controlled by a cerebral neuropeptide, termed pheromone biosynthesis activating neuropeptide (PBAN). PBAN is a 33 amino acid C-terminally amidated neuropeptide that is produced by neuroendocrine cells of the subesophageal ganglion (SEG). Studies of the regulation of sex pheromone biosynthesis in moths have revealed that this function can be elicited by additional neuropeptides all of which share the common C-terminal pentapeptide FXPRL-amide (X = S, T, G, V). In the past two decades extensive studies were carried out on the chemical, cellular and molecular aspects of PBAN and the other peptides (termed the pyrokinin (PK)/PBAN family) aiming to understand the mode of their action on sex pheromone biosynthesis. In the present review we focus on a few of these aspects, specifically on the: (i) structure-activity relationship (SAR) of the PK/PBAN family, (ii) characterization of the PK/PBAN receptor and (iii) development of a novel strategy for the generation of PK/PBAN antagonists and their employment in studying the mode of action of the PK/PBAN peptides.  相似文献   

19.
In insects and other animals, intraspecific communication between individuals of the opposite sex is mediated in part by chemical signals called sex pheromones. In most moth species, male moths rely heavily on species-specific sex pheromones emitted by female moths to identify and orient towards an appropriate mating partner among a large number of sympatric insect species. The silkmoth, Bombyx mori, utilizes the simplest possible pheromone system, in which a single pheromone component, (E, Z)-10,12-hexadecadienol (bombykol), is sufficient to elicit full sexual behavior. We have previously shown that the sex pheromone receptor BmOR1 mediates specific detection of bombykol in the antennae of male silkmoths. However, it is unclear whether the sex pheromone receptor is the minimally sufficient determination factor that triggers initiation of orientation behavior towards a potential mate. Using transgenic silkmoths expressing the sex pheromone receptor PxOR1 of the diamondback moth Plutella xylostella in BmOR1-expressing neurons, we show that the selectivity of the sex pheromone receptor determines the chemical response specificity of sexual behavior in the silkmoth. Bombykol receptor neurons expressing PxOR1 responded to its specific ligand, (Z)-11-hexadecenal (Z11-16:Ald), in a dose-dependent manner. Male moths expressing PxOR1 exhibited typical pheromone orientation behavior and copulation attempts in response to Z11-16:Ald and to females of P. xylostella. Transformation of the bombykol receptor neurons had no effect on their projections in the antennal lobe. These results indicate that activation of bombykol receptor neurons alone is sufficient to trigger full sexual behavior. Thus, a single gene defines behavioral selectivity in sex pheromone communication in the silkmoth. Our findings show that a single molecular determinant can not only function as a modulator of behavior but also as an all-or-nothing initiator of a complex species-specific behavioral sequence.  相似文献   

20.
Moth sex-pheromone biosynthesis follows a circadian cycle, which is cued by the release of the neurohormone pheromone biosynthesis activating neuropeptide (PBAN) to the hemolymph. PBAN binds to a G protein-coupled receptor (GPCR), in pheromone glands, (PG) initially identified by us in Helicoverpa zea moths (HezPBAN-R). In this study, the sequences of the seven transmembrane helices of HezPBAN-R were identified, built, packed and oriented correctly after multiple sequence alignment of the HezPBAN-R and several other GPCRs using the X-ray structure of rhodopsin as a template. Molecular dynamics simulations were run on three different beta-turn types of the C-terminal hexapeptide of PBAN and the results clustered into 12 structurally distinct groups. The lowest energy conformation from each group was used for computer-simulated docking with the model of the HezPBAN-R. Highest scoring complexes were examined and putative binding sites were identified. Experimental studies, using in vitro PG, revealed lower levels of pheromonotropic activity when challenged with pyrokinin-like peptides than with HezPBAN as ligand. Thus, the Drosophila melanogaster pyrokinin-1 receptor (CG9918) was chosen to create chimera receptors by exchanging between the three extracellular loops of the HezPBAN-R and the CG9918 for in silico mutagenesis experiments. The predicted docking model was validated with experimental data obtained from expressed chimera receptors in Sf9 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号