首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Previous studies have suggested that members of the Geobacteraceae can use electrodes as electron acceptors for anaerobic respiration. In order to better understand this electron transfer process for energy production, Geobacter sulfurreducens was inoculated into chambers in which a graphite electrode served as the sole electron acceptor and acetate or hydrogen was the electron donor. The electron-accepting electrodes were maintained at oxidizing potentials by connecting them to similar electrodes in oxygenated medium (fuel cells) or to potentiostats that poised electrodes at +0.2 V versus an Ag/AgCl reference electrode (poised potential). When a small inoculum of G. sulfurreducens was introduced into electrode-containing chambers, electrical current production was dependent upon oxidation of acetate to carbon dioxide and increased exponentially, indicating for the first time that electrode reduction supported the growth of this organism. When the medium was replaced with an anaerobic buffer lacking nutrients required for growth, acetate-dependent electrical current production was unaffected and cells attached to these electrodes continued to generate electrical current for weeks. This represents the first report of microbial electricity production solely by cells attached to an electrode. Electrode-attached cells completely oxidized acetate to levels below detection (<10 μM), and hydrogen was metabolized to a threshold of 3 Pa. The rates of electron transfer to electrodes (0.21 to 1.2 μmol of electrons/mg of protein/min) were similar to those observed for respiration with Fe(III) citrate as the electron acceptor (Eo′ =+0.37 V). The production of current in microbial fuel cell (65 mA/m2 of electrode surface) or poised-potential (163 to 1,143 mA/m2) mode was greater than what has been reported for other microbial systems, even those that employed higher cell densities and electron-shuttling compounds. Since acetate was completely oxidized, the efficiency of conversion of organic electron donor to electricity was significantly higher than in previously described microbial fuel cells. These results suggest that the effectiveness of microbial fuel cells can be increased with organisms such as G. sulfurreducens that can attach to electrodes and remain viable for long periods of time while completely oxidizing organic substrates with quantitative transfer of electrons to an electrode.  相似文献   

3.
Vitamin A deficiency (A−) is a worldwide public health problem. To better understand how vitamin A status influences gut microbiota and host metabolism, we systematically analyzed urine, cecum, serum and liver samples from vitamin A sufficient (A+) and deficient (A−) mice using 1H NMR-based metabolomics, quantitative (q)PCR and 16S rRNA gene sequencing coupled with multivariate data analysis. The microbiota in the cecum of A− mice showed compositional as well as functional shifts compared to the microbiota from A+ mice. Targeted 1H NMR analyses revealed significant changes in microbial metabolite concentrations including higher butyrate and hippurate and decreased acetate and 4-hydroxyphenylacetate in A+ relative to A− mice. Bacterial butyrate-producing genes including butyryl-CoA:acetate CoA-transferase and butyrate kinase were significantly higher in bacteria from A+ versus bacteria from A− mice. A− mice had disturbances in multiple metabolic pathways including alterations in energy (hyperglycemia, glycogenesis, TCA cycle and lipoprotein biosynthesis), amino acid and nucleic acid metabolism. A− mice had hyperglycemia, liver dysfunction, changes in bacterial metabolism and altered gut microbial communities. Moreover, integrative analyses indicated a strong correlation between gut microbiota and host energy metabolism pathways in the liver. Vitamin A regulates host and bacterial metabolism, and the result includes alterations in energy homeostasis.  相似文献   

4.
The number of microorganisms of major metabolic groups and the rates of sulfate reduction and methanogenesis processes in the formation waters of the high-temperature horizons of Dagang oil field have been determined. Using cultural methods, it was shown that the microbial community contained aerobic bacteria oxidizing crude oil, anaerobic fermentative bacteria, sulfate-reducing bacteria, and methanogens. Using cultural methods, the possibility of methane production from a mixture of hydrogen and carbon dioxide (H2 + CO2) and from acetate was established, and this result was confirmed by radioisotope methods involving NaH14CO3 and 14CH3COONa. Analysis of enrichment cultures 16S rDNA of methanogens demonstrated that these microorganisms belong to Methanothermobacter sp. (M. thermautotrophicus), which consumes hydrogen and carbon dioxide as basic substrates. The genes of acetate-utilizing bacteria were not revealed. Phylotypes of the representatives of Thermococcus spp. were found among archaeal 16S rDNA. 16S rRNA genes of bacterial clones belong to the orders Thermoanaerobacteriales (Thermoanaerobacter, Thermovenabulum, Thermacetogenium, and Coprothermobacter spp.), Thermotogales, Nitrospirales (Thermodesulfovibrio sp.) and Planctomycetales. 16S rDNA of a bacterium capable of oxidizing acetate in the course of syntrophic growth with H2-utilizing methanogens was found in high-temperature petroleum reservoirs for the first time. These results provide further insight into the composition of microbial communities of high-temperature petroleum reservoirs, indicating that syntrophic processes play an important part in acetate degradation accompanied by methane production.  相似文献   

5.
《Journal of Asia》2022,25(1):101856
Lipolytic enzymes are an important group of hydrolases that have found immense industrial application in biotechnology. In this study, the ability of gut bacteria isolated from the gut of the Eri silkworm, Samia ricini, to produce lipolytic enzymes was evaluated through qualitative and quantitative assays. The results of lipase screening showed that 28 isolates had lipolytic activity. The results of 16S ribosomal RNA sequencing indicated that the genus Bacillus comprised majority of the lipolytic bacterial isolates (71%) followed by Pseudomonas (15%); whilst Acinetobacter, Enterobacter and Enterococcus comprised 11%. Lipolytic activity was found in bacteria isolates identified from all the three gut compartments of S. ricini larvae with significant activity from isolates extracted from the foregut and midgut. The lipolytic index among the bacterial isolates ranged between 0.63 and 2.81 on Rhodamine B medium, and all isolates exhibited significant lipolytic activity with p-nitrophenyl butyrate (PNPB) with specific activity ranging from 0.52 to 0.82 μmol/min/mg. The effect of pH and temperature showed that lipase activity was optimum at 37 °C and pH 7–9. A phylogenetic relationship of lipase producing gut bacteria indicated high cluster stability for isolates from different stages (>50%) suggesting that the isolates persist across developmental stages of the host. The Eri silkworm is reared for its silk and the knowledge of its gut bacteria with the ability to produce lipases lies in the significance as far as boosting production of this insect via development of probiotics to enhance commercial Eri rearing. In addition, this insect may be a good resource for profiling novel lipolytic microbes for commercial production of lipases as lipases from microbial origin have assumed a great deal of importance as industrial enzymes due to their potential for use in biotechnology.  相似文献   

6.

Background

The development of clean or novel alternative energy has become a global trend that will shape the future of energy. In the present study, 3 microbial strains with different oxygen requirements, including Clostridium acetobutylicum ATCC 824, Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D, were used to construct a hydrogen production system that was composed of a mixed aerobic-facultative anaerobic-anaerobic consortium. The effects of metal ions, organic acids and carbohydrate substrates on this system were analyzed and compared using electrochemical and kinetic assays. It was then tested using small-scale experiments to evaluate its ability to convert starch in 5 L of organic wastewater into hydrogen. For the one-step biohydrogen production experiment, H1 medium (nutrient broth and potato dextrose broth) was mixed directly with GAM broth to generate H2 medium (H1 medium and GAM broth). Finally, Clostridium acetobutylicum ATCC 824, Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D of three species microbial co-culture to produce hydrogen under anaerobic conditions. For the two-step biohydrogen production experiment, the H1 medium, after cultured the microbial strains Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D, was centrifuged to remove the microbial cells and then mixed with GAM broth (H2 medium). Afterward, the bacterial strain Clostridium acetobutylicum ATCC 824 was inoculated into the H2 medium to produce hydrogen by anaerobic fermentation.

Results

The experimental results demonstrated that the optimum conditions for the small-scale fermentative hydrogen production system were at pH 7.0, 35°C, a mixed medium, including H1 medium and H2 medium with 0.50 mol/L ferrous chloride, 0.50 mol/L magnesium sulfate, 0.50 mol/L potassium chloride, 1% w/v citric acid, 5% w/v fructose and 5% w/v glucose. The overall hydrogen production efficiency in the shake flask fermentation group was 33.7 mL/h-1.L-1, and those the two-step and the one-step processes of the small-scale fermentative hydrogen production system were 41.2 mL/h-1.L-1 and 35.1 mL/h-1.L-1, respectively.

Conclusion

Therefore, the results indicate that the hydrogen production efficiency of the two-step process is higher than that of the one-step process.  相似文献   

7.
Wheat dextrin soluble fibre may have metabolic and health benefits, potentially acting via mechanisms governed by the selective modulation of the human gut microbiota. Our aim was to examine the impact of wheat dextrin on the composition and metabolic activity of the gut microbiota. We used a validated in vitro three-stage continuous culture human colonic model (gut model) system comprised of vessels simulating anatomical regions of the human colon. To mimic human ingestion, 7 g of wheat dextrin (NUTRIOSE® FB06) was administered to three gut models, twice daily at 10.00 and 15.00, for a total of 18 days. Samples were collected and analysed for microbial composition and organic acid concentrations by 16S rRNA-based fluorescence in situ hybridisation and gas chromatography approaches, respectively. Wheat dextrin mediated a significant increase in total bacteria in vessels simulating the transverse and distal colon, and a significant increase in key butyrate-producing bacteria Clostridium cluster XIVa and Roseburia genus in all vessels of the gut model. The production of principal short-chain fatty acids, acetate, propionate and butyrate, which have been purported to have protective, trophic and metabolic host benefits, were increased. Specifically, wheat dextrin fermentation had a significant butyrogenic effect in all vessels of the gut model and significantly increased production of acetate (vessels 2 and 3) and propionate (vessel 3), simulating the transverse and distal regions of the human colon, respectively. In conclusion, wheat dextrin NUTRIOSE® FB06 is selectively fermented in vitro by Clostridium cluster XIVa and Roseburia genus and beneficially alters the metabolic profile of the human gut microbiota.  相似文献   

8.
Humivorous scarab beetle larvae can thrive exclusively on soil organic matter. Feeding experiments have revealed that the larva of Pachnoda ephippiata mineralizes all major humus components except the polyphenolic fraction. High proteolytic activity in the alkaline midgut fluid and an enormous ammonia production during gut passage suggested that peptidic soil components are an important dietary resource for the larva. By comparing acid-hydrolyzable amino acids in food soil and feces, we showed that a significant fraction of the peptides in soil are removed during gut passage. This agrees well with the high concentrations of free amino acids found the midgut section. Incubation experiments revealed the presence of substantial particle-associated proteolytic activity also in the hindgut, most probably due to microbial activity. High rates of ammonia formation in hindgut homogenates and the conversion of radiolabeled amino acids to acetate and propionate indicated that microbial fermentations of soil peptides play an important role in the hindgut. This was corroborated by viable counts of amino-acid-fermenting bacteria, which formed a substantial fraction of the hindgut microbiota. A complete inventory of organic and inorganic nitrogen species before, during, and after gut passage revealed the formation of nitrite and nitrate in midgut and hindgut, and a substantial nitrogen deficit in the feces, suggesting that part of the ammonia formed by mineralization is subjected to oxidation and subsequent denitrification to N2. Together, the results strongly support the hypothesis that peptidic soil components form a major energy and nutrient source for humivorous insects, supplying the animal with microbial fermentation products and essential amino acids.  相似文献   

9.
10.
Hindgut Fermentation in Three Species of Marine Herbivorous Fish   总被引:2,自引:0,他引:2       下载免费PDF全文
Symbioses with gut microorganisms provides a means by which terrestrial herbivores are able to obtain energy. These microorganisms ferment cell wall materials of plants to short-chain fatty acids (SCFA), which are then absorbed and used by the host animal. Many marine herbivorous fishes contain SCFA (predominantly acetate) in their hindgut, indicative of gut microbial activity, but rates of SCFA production have not been measured. Such information is an important prerequisite to understanding the contribution that gut microorganisms make in satisfying the energy needs of the fish. We have estimated the rates of acetate production in the gut of three species of temperate marine herbivorous fish from northeastern New Zealand: Kyphosus sydneyanus (family Kyphosidae), Odax pullus (family Odacidae), and Aplodactylus arctidens (family Aplodactylidae). Ex vivo preparations of freshly caught fish were maintained with their respiratory and circulatory systems intact, radiolabeled acetate was injected into ligated hindgut sections, and gut fluid was sampled at 20-min intervals for 2 h. Ranges for acetate turnover in the hindguts of the studied species were determined from the slope of plots as the log of the specific radioactivity of acetate versus time and pool size, expressed on a nanomole per milliliter per minute basis. Values were 450 to 570 (K. sydneyanus), 373 to 551 (O. pullus), and 130 to 312 (A. arctidens). These rates are comparable to those found in the guts of herbivorous reptiles and mammals. To determine the contribution of metabolic pathways to the fate of acetate, rates of sulfate reduction and methanogenesis were measured in the fore-, mid-, and hindgut sections of the three fish species. Both rates increased from the distal to proximal end of the hindgut, where sulfate reduction accounted for only a small proportion (<5%) of acetate methyl group transformed to CO2, and exceeded methanogenesis from acetate by >50-fold. When gut size was taken into account, acetate uptake from the hindgut of the fish species, determined on a millimole per day per kilogram of body weight basis, was 70 (K. sydneyanus), 18 (O. pullus), and 10 (A. arctidens).  相似文献   

11.
Methane production by microbial communities from Lake Baikal bottom sediments with different chemical composition of pore water was studied. Methane production was more active in the media supplemented with H2: CO2 and H2 + CH3COONa, rather than on media with acetate as the sole source of carbon and energy. Addition of methanol stimulated methane production only in the case of microbial communities from upper silts. Ability of the communities to produce methane correlated reliably with the concentrations of the NO3–, SO42?, Cl, and CH3COO ions in the pore water of the relevant sediments. Cultivation of communities from the mud volcano sediments resulted in development of methanogenic archaea of the family Methanocellaсеае in the media supplemented with H2: CO2 and H2 + CH3COONa, while methanogenic archaea in the communities cultivated without additional substrates belonged to the genera Methanoregula, Methanobacterium, and Methanosaeta.  相似文献   

12.
In the first part of this paper, gut microbial difference of two genotypes mice was researched. The gut microbial community of type 2 diabetes animal model KKAy mice and normal C57BL/6J mice had clear distinctions in DGGE (denaturing gradient gel electrophoresis) profiles. The pairwise similarity coefficient (C s ) was only 26–44 % between KKAy and C57BL/6J, but C s was 82–100 % among same genotypes mice. Thirteen dominant bands were cloned from DGGE profiles to exhibit difference on gut microbial structure further. In the second part of this paper, the influence of hypoglycemic drug Pioglitazone on the gut microbes in KKAy mice was researched by gut microbial diversity analysis and principal component analysis (PCA). The results showed that Pioglitazone reduced the gut microbial diversity slightly and changed gut microbial structure of KKAy mice to that of normal C57BL/6J mice.  相似文献   

13.
Neonatal jaundice is a common disease that affects up to 60% of newborns. Herein, we performed a comparative analysis of the gut microbiome in neonatal jaundice and non-neonatal jaundice infants (NJIs) and identified gut microbial alterations in neonatal jaundice pre- and post-treatment. We prospectively collected 232 fecal samples from 51 infants at five time points (0, 1, 3, 6, and 12 months). Finally, 114 samples from 6 NJIs and 19 non-NJI completed MiSeq sequencing and analysis. We characterized the gut microbiome and identified microbial differences and gene functions. Meconium microbial diversity from NJI was decreased compared with that from non-NJI. The genus Gemella was decreased in NJI versus non-NJI. Eleven predicted microbial functions, including fructose 1,6-bisphosphatase III and pyruvate carboxylase subunit B, decreased, while three functions, including acetyl-CoA acyltransferase, increased in NJI. After treatments, the microbial community presented significant alteration-based β diversity. The phyla Firmicutes and Actinobacteria were increased, while Proteobacteria and Fusobacteria were decreased. Microbial alterations were also analyzed between 6 recovered NJI and 19 non-NJI. The gut microbiota was unique in the meconium microbiome from NJI, implying that early gut microbiome intervention could be promising for the management of neonatal jaundice. Alterations of gut microbiota from NJI can be of great value to bolster evidence-based prevention against ‘bacterial dysbiosis’.  相似文献   

14.
Disturbance of the beneficial gut microbial community is a potential collateral effect of antibiotics, which have many uses in animal agriculture (disease treatment or prevention and feed efficiency improvement). Understanding antibiotic effects on bacterial communities at different intestinal locations is essential to realize the full benefits and consequences of in-feed antibiotics. In this study, we defined the lumenal and mucosal bacterial communities from the small intestine (ileum) and large intestine (cecum and colon) plus feces, and characterized the effects of in-feed antibiotics (chlortetracycline, sulfamethazine and penicillin (ASP250)) on these communities. 16S rRNA gene sequence and metagenomic analyses of bacterial membership and functions revealed dramatic differences between small and large intestinal locations, including enrichment of Firmicutes and phage-encoding genes in the ileum. The large intestinal microbiota encoded numerous genes to degrade plant cell wall components, and these genes were lacking in the ileum. The mucosa-associated ileal microbiota harbored greater bacterial diversity than the lumen but similar membership to the mucosa of the large intestine, suggesting that most gut microbes can associate with the mucosa and might serve as an inoculum for the lumen. The collateral effects on the microbiota of antibiotic-fed animals caused divergence from that of control animals, with notable changes being increases in Escherichia coli populations in the ileum, Lachnobacterium spp. in all gut locations, and resistance genes to antibiotics not administered. Characterizing the differential metabolic capacities and response to perturbation at distinct intestinal locations will inform strategies to improve gut health and food safety.  相似文献   

15.
《遗传学报》2022,49(2):155-164
Multifactors have been reported to affect the gut microbiome, including genotype, age, diet, and nutrition. However, few reports have investigated the relative capacity of different factors to shape the gut microbiome in a single study. Our design used a genetic vitamin A-deficient mouse model, the Rbp4?/? mouse, feeding with the low vitamin A diets at different ages of initiation (4 or 7 weeks) for 28 days. Fecal samples were collected for bacterial profiling at seven time points after diet controlling. With Rbp4 depletion, Akkermansia decreased and Bacteroides increased, whereas Desulfovibrio, Barnesiella, Clostridium_XlVa, and Lactobacillus fluctuated. The bacterial community swiftly adjusted with the vitamin A-deficient diet administration and gradually changed (e.g., decrease of Barnesiella and increase of Desulfovibrio). Age exerted a relatively weaker but long-last influence. At an earlier age to feed a vitamin A-deficient diet, a higher microbial dysbiosis index will be valued. Of note, the shaping effects of diet and age on the bacterial community varied with the difference of genotype, which might indicate a greater role of genotype than diet and age in shaping the gut microbiome.  相似文献   

16.
Whang LM  Lin CA  Liu IC  Wu CW  Cheng HH 《Bioresource technology》2011,102(18):8378-8383
This study evaluates the microbial metabolism and energy demand in fermentative biohydrogen production using Clostridium tyrobutyricum FYa102 at different hydraulic retention times (HRT) over a period of 1-18 h. The hydrogen yield shows a positive correlation with the butyrate yield, the B/A ratio, and the YH2/2(YHAc+YHBu) ratio, but a negative correlation with the lactate yield. A decrease in HRT, which is accompanied by an increased biomass growth, tends to decrease the B/A ratio, due presumably to a higher energy demand for microbial growth. The production of lactate at a low HRT, however, may involve an unfavorable change in e equiv distribution to result in a reduced hydrogen production. Finally, the relatively high hydrogen yields observed in the bioreactor with the peptone addition may be ascribed to the utilization of peptone as an additional energy and/or amino-acid source, thus reducing the glucose demand for biomass growth during the hydrogen production process.  相似文献   

17.
Vertebrates are metagenomic organisms in that they are composed not only of their own genes but also those of their associated microbial cells. The majority of these associated microorganisms are found in the gastrointestinal tract (GIT) and presumably assist in processes such as energy and nutrient acquisition. Few studies have investigated the associated gut bacterial communities of non-mammalian vertebrates, and most rely on captive animals and/or fecal samples only. Here we investigate the gut bacterial community composition of a squamate reptile, the cottonmouth snake, Agkistrodon piscivorus through pyrosequencing of the bacterial 16S rRNA gene. We characterize the bacterial communities present in the small intestine, large intestine and cloaca. Many bacterial lineages present have been reported by other vertebrate gut community studies, but we also recovered unexpected bacteria that may be unique to squamate gut communities. Bacterial communities were not phylogenetically clustered according to GIT region, but there were statistically significant differences in community composition between regions. Additionally we demonstrate the utility of using cloacal swabs as a method for sampling snake gut bacterial communities.  相似文献   

18.

Background

In humans it is unknown if the composition of the gut microbiota alters the risk of Plasmodium falciparum infection or the risk of developing febrile malaria once P. falciparum infection is established. Here we collected stool samples from a cohort composed of 195 Malian children and adults just prior to an intense P. falciparum transmission season. We assayed these samples using massively parallel sequencing of the 16S ribosomal RNA gene to identify the composition of the gut bacterial communities in these individuals. During the ensuing 6-month P. falciparum transmission season we examined the relationship between the stool microbiota composition of individuals in this cohort and their prospective risk of both P. falciparum infection and febrile malaria.

Results

Consistent with prior studies, stool microbial diversity in the present cohort increased with age, although the overall microbiota profile was distinct from cohorts in other regions of Africa, Asia and North America. Age-adjusted Cox regression analysis revealed a significant association between microbiota composition and the prospective risk of P. falciparum infection; however, no relationship was observed between microbiota composition and the risk of developing febrile malaria once P. falciparum infection was established.

Conclusions

These findings underscore the diversity of gut microbiota across geographic regions, and suggest that strategic modulation of gut microbiota composition could decrease the risk of P. falciparum infection in malaria-endemic areas, potentially as an adjunct to partially effective malaria vaccines.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1819-3) contains supplementary material, which is available to authorized users.  相似文献   

19.
Anaerobic fermentative biohydrogen production, the conversion of organic substances especially from organic wastes to hydrogen gas, has become a viable and promising means of producing sustainable energy. Successful biological hydrogen production depends on the overall performance (results of interactions) of bacterial communities, i.e., mixed cultures in reactors. Mixed cultures might provide useful combinations of metabolic pathways for the processing of complex waste material ingredients, thereby supporting the more efficient decomposition and hydrogenation of biomass than pure bacteria species would. Therefore, understanding the relationships between variations in microbial composition and hydrogen production efficiency is the first step in constructing more efficient hydrogen-producing consortia, especially when complex and non-sterilized organic wastes are used as feeding substrates. In this review, we describe recent discoveries on bacterial community composition obtained from dark fermentation biohydrogen production systems, with emphasis on the possible roles of microorganisms that co-exist with common hydrogen producers.  相似文献   

20.
Since the outset of the coronavirus disease 2019 (COVID-19) pandemic, the gut microbiome in COVID-19 has garnered substantial interest, given its significant roles in human health and pathophysiology. Accumulating evidence is unveiling that the gut microbiome is broadly altered in COVID-19, including the bacterial microbiome, mycobiome, and virome. Overall, the gut microbial ecological network is significantly weakened and becomes sparse in patients with COVID-19, together with a decrease in gut microbiome diversity. Beyond the existence of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), the gut microbiome of patients with COVID-19 is also characterized by enrichment of opportunistic bacteria, fungi, and eukaryotic viruses, which are also associated with disease severity and presentation. Meanwhile, a multitude of symbiotic bacteria and bacteriophages are decreased in abundance in patients with COVID-19. Such gut microbiome features persist in a significant subset of patients with COVID-19 even after disease resolution, coinciding with ‘long COVID’ (also known as post-acute sequelae of COVID-19). The broadly-altered gut microbiome is largely a consequence of SARS-CoV-2 infection and its downstream detrimental effects on the systemic host immunity and the gut milieu. The impaired host immunity and distorted gut microbial ecology, particularly loss of low-abundance beneficial bacteria and blooms of opportunistic fungi including Candida, may hinder the reassembly of the gut microbiome post COVID-19. Future investigation is necessary to fully understand the role of the gut microbiome in host immunity against SARS-CoV-2 infection, as well as the long-term effect of COVID-19 on the gut microbiome in relation to the host health after the pandemic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号