首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of recombinants in Hfr crosses was studied in Escherichia coli strains carrying combinations of genes known to affect recombination and DNA repair. Mutations in ruv and recG eliminate activities that have been shown to process Holliday junction intermediates by nuclease cleavage and/or branch migration. Strains carrying null mutations in both ruv and recG produce few recombinants in Hfr crosses and are extremely sensitive to UV light. The introduction of additional mutations in recF, recJ, recO, recQ, or recR is shown to increase the yield of recombinants by 6- to 20-fold via a mechanism that depends on recBC. The products of these genes have been linked with the initiation of recombination. We propose that mutation of recF, recJ, recO, recQ, or recR redirects recombination to events initiated by the RecBCD enzyme. The strains constructed were also tested for sensitivity to UV light. Addition of recF, recJ, recN, recO, recQ, or recR mutations had no effect on the survival of ruv recG strains. The implications of these findings are discussed in relation to molecular models for recombination and DNA repair that invoke different roles for the branch migration activities of the RuvAB and RecG proteins.  相似文献   

2.
Bacteriophage lambda can recombine in recBC sbcB sbcC mutant cells by using its own gene orf, the Escherichia coli recO, recR, and recF genes, or both. Expression of an orf-containing plasmid complements the recombination defects of orf mutant phage. However, this clone does not complement a recO mutation for conjugational recombination or recO, recR, or recF mutations for repair of UV-induced DNA damage. A plasmid clone of orf produces a protein with an apparent molecular mass of 15 kDa.  相似文献   

3.
The orf gene of bacteriophage lambda, fused to a promoter, was placed in the galK locus of Escherichia coli K-12. Orf was found to suppress the recombination deficiency and sensitivity to UV radiation of mutants, in a Delta(recC ptr recB recD)::P(tac) gam bet exo pae cI DeltarecG background, lacking recF, recO, recR, ruvAB, and ruvC functions. It also suppressed defects of these mutants in establishing replication of a pSC101-related plasmid. Compared to orf, the recA803 allele had only small effects on recF, recO, and recR mutant phenotypes and no effect on a ruvAB mutant. In a fully wild-type background with respect to known recombination and repair functions, orf partially suppressed the UV sensitivity of ruvAB and ruvC mutants.  相似文献   

4.
The RecF pathway catalyzes generalized recombination in Escherichia coli that is mutant for recBC, sbcB and sbcC. This pathway operating on conjugational recombination requires the recA, recF, recJ, recN, recO, recQ, recR, ruvA, ruvB and ruvC genes. In contrast, lambda mutant for its own recombination genes, int, red alpha and red beta, requires only the recA and recJ genes to recombine efficiently in recBC sbcB sbcC cells. Deletion of an open reading frame in the ninR region of lambda results in an additional requirement for recO, recR and recF in order to recombine in recBC sbcB sbcC mutant cells. This function, designated orf for recO-, recR- and recF-like function, is largely RecF pathway specific.  相似文献   

5.
The effect of mutations in known recombination genes (recA, recB, recC, recE, recF, recJ, recN, recO, recQ and ruv) on intramolecular recombination of plasmids was studied in recB recC sbcB and recB recC sbcA Escherichia coli mutants. The rate of recombination of circular dimer plasmids was at least 1000-fold higher in recB recC sbcB or recB recC sbcA mutants as compared to wild-type cells. The rate was decreased by mutations in recA, recF, recJ, recO, ruv or mutS in recB recC sbcB mutants, and by mutations in recE, recN, recO, recQ, ruv or mutS in recB recC sbcA mutants. In addition to measuring the recombination rate of circular dimer plasmids, the recombination-mediated transformation of linear dimer plasmids was also studied. Linear dimer plasmids transformed recB recC sbcB and recB recC sbcA mutants 20- to 40-fold more efficiently than wild-type cells. The transformation efficiency of linear dimer plasmids in recB recC sbcB mutants was decreased by mutations in recA, recF, recJ, recO, recQ or lexA (lexA3). In recB recC sbcA mutants the transformation efficiency of linear dimers was decreased only by a recE mutation. Physical analysis of linear dimer- or circular dimer-transformed recB recC sbcB mutants revealed that all transformants contained recombinant monomer genotypes. This suggests that recombination in recB recC sbcB cells is very efficient.  相似文献   

6.
RecBCD enzyme has multiple activities including helicase, exonuclease and endonuclease activities. Mutations in the genes recB or recC, encoding two subunits of the enzyme, reduce the frequency of many types of recombinational events. Mutations in recD, encoding the third subunit, do not reduce recombination even though most of the activities of the RecBCD enzyme are severely reduced. In this study, the genetic dependence of different types of recombination in recD mutants has been investigated. The effects of mutations in genes in the RecBCD pathway (recA and recC) as well as the genes specific for the RecF pathway (recF, recJ, recN, recO, recQ, ruv and lexA) were tested on conjugational, transductional and plasmid recombination, and on UV survival. recD mutants were hyper-recombinogenic for all the monitored recombination events, especially those involving plasmids, and all recombination events in recD strains required recA and recC. In addition, unlike recD+ strains, chromosomal recombination events and the repair of UV damage to DNA in recD strains were dependent on one RecF pathway gene, recJ. Only a subset of the tested recombination events were affected by ruv, recN, recQ, recO and lexA mutations.  相似文献   

7.
The recF and priA genes have roles in DNA repair and homologous recombination. Mutations in these genes also cause decreases in cell viability and alterations in UV-inducible sulAp–lacZ (SOS) expression. To find out if the two genes are in the same or different pathways for viability and SOS expression, the phenotypes of the double mutant strains were studied. The recF priA double mutant showed a lower viability and SOS expression level than either of the single mutants. In the case of cell viability, recF missense mutations decreased viability of a priA2 :: kan strain two to fivefold whereas recF null priA2 :: kan double mutants were not viable at all. dnaC809 , a mutation that suppresses the UV-sensitive (UVS) and Rec phenotypes of priA2 :: kan , restored cell viability, but not UV-inducible SOS expression, to a priA recF strain. Since recF is epistatic with recO and recR ( recOR ) for UV resistance, recOR mutations were also tested with priA2 :: kan . No overlap was found between recOR and priA for viability and SOS expression. It is concluded that priA and recF have two different overlapping functions in viability and SOS expression that are distinguishable by the effects of dnaC809 . The role of recF in a priA2 :: kan strain in cell viability is a new function for recF and unlike recF  's other roles in DNA repair and recombination, is independent of recOR . A new role for priA in UV-inducible SOS expression in a recF mutant is also defined.  相似文献   

8.
Double mutants of Escherichia coli dam (DNA adenine methyltransferase) strains with ruvA, ruvB, or ruvC could not be constructed, whereas dam derivatives with recD, recF, recJ, and recR were viable. The ruv gene products are required for Holliday junction translocation and resolution of recombination intermediates. A dam recG (Holliday junction translocation) mutant strain was isolated but at a very much lower frequency than expected. The inviability of a dam lexA (Ind(-)) host was abrogated by the simultaneous presence of plasmids encoding both recA and ruvAB. This result indicates that of more than 20 SOS genes, only recA and ruvAB need to be derepressed to allow for dam mutant survival. The presence of mutS or mutL mutations allowed the construction of dam lexA (Ind(-)) derivatives. The requirement for recA, recB, recC, ruvA, ruvB, ruvC, and possibly recG gene expression indicates that recombination is essential for viability of dam bacteria probably to repair DNA double-strand breaks. The effect of mutS and mutL mutations indicates that DNA mismatch repair is the ultimate source of most of these DNA breaks. The requirement for recombination also suggests an explanation for the sensitivity of dam cells to certain DNA-damaging agents.  相似文献   

9.
RecBCD protein, necessary for Escherichia coli dam mutant viability, is directly required for DNA repair. Recombination genes recF+, recN+, recO+, and recQ+ are not essential for dam mutant viability; they are required for recBC sbcBC dam mutant survival. mutH, mutL, or mutS mutations do not suppress subinduction of SOS genes in dam mutants.  相似文献   

10.
In Escherichia coli, UV-irradiated cells resume DNA synthesis after a transient inhibition by a process called replication restart. To elucidate the role of several key proteins involved in this process, we have analysed the time dependence of replication restart in strains carrying a combination of mutations in lexA, recA, polB (pol II), umuDC (pol V), priA, dnaC, recF, recO or recR. We find that both pol II and the origin-independent primosome-assembling function of PriA are essential for the immediate recovery of DNA synthesis after UV irradiation. In their absence, translesion replication or 'replication readthrough' occurs approximately 50 min after UV and is pol V-dependent. In a wild-type, lexA+ background, mutations in recF, recO or recR block both pathways. Similar results were obtained with a lexA(Def) recF strain. However, lexA(Def) recO or lexA(Def) recR strains, although unable to facilitate PriA-pol II-dependent restart, were able to perform pol V-dependent readthrough. The defects in restart attributed to mutations in recF, recO or recR were suppressed in a recA730 lexA(Def) strain expressing constitutively activated RecA (RecA*). Our data suggest that in a wild-type background, RecF, O and R are important for the induction of the SOS response and the formation of RecA*-dependent recombination intermediates necessary for PriA/Pol II-dependent replication restart. In con-trast, only RecF is required for the activation of RecA that leads to the formation of pol V (UmuD'2C) and facilitates replication readthrough.  相似文献   

11.
The recF, recO, and recR genes form the recFOR epistasis group for DNA repair. recF mutants are sensitive to UV irradiation and fail to properly induce the SOS response. Using plasmid derivatives that overexpress combinations of the recO+ and recR+ genes, we tested the hypothesis that high-level expression of recO+ and recR+ (recOR) in vivo will indirectly suppress the recF mutant phenotypes mentioned above. We found that overexpression of just recR+ from the plasmid will partially suppress both phenotypes. Expression of the chromosomal recO+ gene is essential for the recR+ suppression. Hence we call this RecOR suppression of recF mutant phenotypes. RecOR suppression of SOS induction is more efficient with recO+ expression from a plasmid than with recO+ expression from the chromosome. This is not true for RecOR suppression of UV sensitivity (the two are equal). Comparison of RecOR suppression with the suppression caused by recA801 and recA803 shows that RecOR suppression of UV sensitivity is more effective than recA803 suppression and that RecOR suppression of UV sensitivity, like recA801 suppression, requires recJ+. We present a model that explains the data and proposes a function for the recFOR epistasis group in the induction of the SOS response and recombinational DNA repair.  相似文献   

12.
Helicase II (uvrD gene product) and helicase IV (helD gene product) have been shown previously to be involved in the RecF pathway of recombination. To better understand the role of these two proteins in homologous recombination in the RecF pathway [recBCsbcB(C) background], we investigated the interactions between helD, uvrD and the following RecF pathway genes: recF, recO, recN and ruvAB. We observed synergistic interactions between uvrD and the recF, recN, recO and recG genes in both conjugational recombination and the repair of methylmethane sulfonate (MMS)-induced DNA damage. No synergistic interactions were detected between helD and the recF, recO and recN genes when conjugational recombination was analyzed. We did, however, detect synergistic interactions between helD and recF/recO in recombinational repair. Suprisingly, the uvrD deletion completely suppressed the phenotype of a ruvB mutation in a recBCsbcB(C) background. Both conjugational recombination efficiency and MMS-damaged DNA repair proficiency returned to wild-type levels in the δuvrDruvB9 double mutant. Suppression of the effects of the ruvB mutation by a uvrD deletion was dependent on the recG and recN genes and not dependent on the recF/O/R genes. These data are discussed in the context of two ``RecF' homologous recombination pathways operating in a recBCsbcB(C) strain background.  相似文献   

13.
The frequency of recombination exchanges per unit length of DNA (Freuld) can be estimated by measuring the scale of the genetic map that is the mean statistical distance between two neighboring crossovers. The scales appear to be equal for the alternative pathways of recombination, RecBCD (wild-type cells) or RecF (recBC- sbcB- sbcC- genotypes). The absolute value of the scale depends on specific experimental conditions. recR, recQ, ruv, recJ and recN genes of the RecF pathway of recombination (recBC- sbcBC- cell genotypes) do not appear to be silent in wild-type cells where the RecBCD pathway predominates. On the contrary, these genes are responsible for the Freuld. The list recF504::Kmr greater than recQ61::Tn3 greater than ruv-54 greater than recJ284::Tn10 shows decreasing efficiency in inhibiting recombination exchanges by these mutations. The recN264 mutation gives a small, but opposite effect of increasing the frequency of recombination exchanges. The effect of the recF and recQ mutations appears to be additive, but that is not the case in combinations of ruv-54 with recF504::Kmr or recQ61::Tn3.  相似文献   

14.
Wang G  Lo LF  Maier RJ 《DNA Repair》2011,10(4):373-379
Two pathways for DNA recombination, AddAB (RecBCD-like) and RecRO, were identified in Helicobacter pylori, a pathogenic bacterium that colonizes human stomachs resulting in a series of gastric diseases. In this study, we examined the physiological roles of H. pylori RecRO pathway in DNA recombinational repair. We characterized H. pylori single mutants in recR and in recO, genes in the putative gap repair recombination pathway, and an addA recO double mutant that is thus deficient in both pathways that initiate DNA recombinational repair. The recR or recO single mutants showed the same level of sensitivity to mitomycin C as the parent strain, suggesting that the RecRO pathway is not responsible for the repair of DNA double strand breaks. However, H. pylori recR and recO mutants are highly sensitive to oxidative stress and separately to acid stress, two major stress conditions that H. pylori encounters in its physiological niche. The complementation of the recR mutant restored the sensitivity to oxidative and acid stress to the wild type level. By measuring DNA transformation frequencies, the recR and recO single mutants were shown to have no effect on inter-genomic recombination, whereas the addA recO double mutant had a greatly (~12-fold) reduced transformation frequency. On the other hand, the RecRO pathway was shown to play a significant role in intra-genomic recombination with direct repeat sequences. Whereas the recA strain had a deletion frequency 35-fold lower than that of background level, inactivation of recR resulted in a 4-fold decrease in deletion frequency. In a mouse infection model, the three mutant strains displayed a greatly reduced ability to colonize the host stomachs. The geometric means of colonization number for the wild type, recR, recO, and addA recO strains were 6 x 10?, 1.6 x 10?, 1.4 x 10? and 4 x 103 CFU/g stomach, respectively. H. pylori RecRO-mediated DNA recombinational repair (intra-genomic recombination) is thus involved in repairing DNA damage induced by oxidative and acid stresses and plays an important role in bacterial survival and persistent colonization in the host.  相似文献   

15.
The RecA loading activity of the RecBCD enzyme, together with its helicase and 5' --> 3' exonuclease activities, is essential for recombination in Escherichia coli. One particular mutant in the nuclease catalytic center of RecB, i.e., recB1080, produces an enzyme that does not have nuclease activity and is unable to load RecA protein onto single-stranded DNA. There are, however, previously published contradictory data on the recombination proficiency of this mutant. In a recF(-) background the recB1080 mutant is recombination deficient, whereas in a recF(+) genetic background it is recombination proficient. A possible explanation for these contrasting phenotypes may be that the RecFOR system promotes RecA-single-strand DNA filament formation and replaces the RecA loading defect of the RecB1080CD enzyme. We tested this hypothesis by using three in vivo assays. We compared the recombination proficiencies of recB1080, recO, recR, and recF single mutants and recB1080 recO, recB1080 recR, and recB1080 recF double mutants. We show that RecFOR functions rescue the repair and recombination deficiency of the recB1080 mutant and that RecA loading is independent of RecFOR in the recB1080 recD double mutant where this activity is provided by the RecB1080C(D(-)) enzyme. According to our results as well as previous data, three essential activities for the initiation of recombination in the recB1080 mutant are provided by different proteins, i.e., helicase activity by RecB1080CD, 5' --> 3' exonuclease by RecJ- and RecA-single-stranded DNA filament formation by RecFOR.  相似文献   

16.
Expression of the Escherichia coli mutA mutator phenotype requires recA, recB, recC, ruvA, and ruvC gene, but not recD, recF, recO, or recR genes. Thus, the recBCD-dependent homologous recombination system is a component of the signal pathway that activates an error-prone DNA polymerase in mutA cells.  相似文献   

17.
Plasmid pGam18 carrying one of the cloned mutant loci, responsible for enhanced radiation resistance in the strain Escherichia coli Gamr444, was shown to increase resistance to the lethal effect of gamma-rays with a dose modification factor DMF = 2. Enhanced resistance was observed in wild-type cells and in the mutant recBC sbcB, but not recFBC sbcA. This indicates the involvement of a product of the gam18 locus in the RecF pathway of recombinational repair. The protective effect of plasmid pGam18 against radiation was completely abolished by mutations in the most RecF pathway genes (recF, recJ, recR, recO, recQ, recN, and ruvB). However, three mutations in the uvrD gene, which encodes DNA helicase II and belongs to the RecF pathway, can be partially complemented by plasmid pGam18. These data suggest that the mutant allele gam18 affects the DNA helicase II activity at the presynaptic stage of the RecF pathway-mediated repair of DNA double-stranded breaks induced by gamma-irradiation.  相似文献   

18.
Deinococcus radiodurans exhibits extraordinary resistance to the lethal effect of DNA-damaging agents, a characteristic attributed to its highly proficient DNA repair capacity. Although the D. radiodurans genome is clearly devoid of recBC and addAB counterparts as RecA mediators, the genome possesses all genes associated with the RecFOR pathway. In an effort to gain insights into the role of D. radiodurans RecFOR proteins in homologous recombination, we generated recF, recO and recR disruptant strains and characterized the disruption effects. All the disruptant strains exhibited delayed growth relative to the wild-type, indicating that the RecF, RecO and RecR proteins play an important role in cell growth under normal growth conditions. A slight reduction in transformation efficiency was observed in the recF and recO disruptant strains compared to the wild-type strain. Interestingly, disruption of recR resulted in severe reduction of the transformation efficiency. On the other hand, the recF disruptant strain was the most sensitive phenotype to γ rays, UV irradiation and mitomycin C among the three disruptants. In the recF disruptant strain, the intracellular level of the LexA1 protein did not decrease following γ irradiation, suggesting that a large amount of the RecA protein remains inactive despite being induced. These results demonstrate that the RecF protein plays a crucial role in the homologous recombination repair process by facilitating RecA activation in D. radiodurans. Thus, the RecF and RecR proteins are involved in the RecA activation and the stability of incoming DNA, respectively, during RecA-mediated homologous recombination processes that initiated the ESDSA pathway in D. radiodurans. Possible mechanisms that involve the RecFOR complex in homologous intermolecular recombination and homologous recombination repair processes are also discussed.  相似文献   

19.
RecA is important for recombination, DNA repair, and SOS induction. In Escherichia coli, RecBCD, RecFOR, and RecJQ prepare DNA substrates onto which RecA binds. UvrD is a 3'-to-5' helicase that participates in methyl-directed mismatch repair and nucleotide excision repair. uvrD deletion mutants are sensitive to UV irradiation, hypermutable, and hyper-rec. In vitro, UvrD can dissociate RecA from single-stranded DNA. Other experiments suggest that UvrD removes RecA from DNA where it promotes unproductive reactions. To test if UvrD limits the number and/or the size of RecA-DNA structures in vivo, an uvrD mutation was combined with recA-gfp. This recA allele allows the number of RecA structures and the amount of RecA at these structures to be assayed in living cells. uvrD mutants show a threefold increase in the number of RecA-GFP foci, and these foci are, on average, nearly twofold higher in relative intensity. The increased number of RecA-green fluorescent protein foci in the uvrD mutant is dependent on recF, recO, recR, recJ, and recQ. The increase in average relative intensity is dependent on recO and recQ. These data support an in vivo role for UvrD in removing RecA from the DNA.  相似文献   

20.
In Escherichia coli, recF and recR are required to stabilize and maintain replication forks arrested by UV-induced DNA damage. In the absence of RecF, replication fails to recover, and the nascent lagging strand of the arrested replication fork is extensively degraded by the RecQ helicase and RecJ nuclease. recO mutants are epistatic with recF and recR with respect to recombination and survival assays after DNA damage. In this study, we show that RecO functions with RecF and RecR to protect the nascent lagging strand of arrested replication forks after UV-irradiation. In the absence of RecO, the nascent DNA at arrested replication forks is extensively degraded and replication fails to recover. The extent of nascent DNA degradation is equivalent in single, double, or triple mutants of recF, recO, or recR, and the degradation is dependent upon RecJ and RecQ functions. Because RecF has been shown to protect the nascent lagging strand from degradation, these observations indicate that RecR and RecO function with RecF to protect the same nascent strand of the arrested replication fork and are likely to act at a common point during the recovery process. We discuss these results in relation to the biochemical and cellular properties of RecF, RecO, and RecR and their potential role in loading RecA filaments to maintain the replication fork structure after the arrest of replication by UV-induced DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号