首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many virulence genes in plant bacterial pathogens are coordinately regulated by “global” regulatory genes. Conducting DNA microarray analysis of bacterial mutants of such genes, compared with the wild type, can help to refine the list of genes that may contribute to virulence in bacterial pathogens. The regulatory gene algU, with roles in stress response and regulation of the biosynthesis of the exopolysaccharide alginate in Pseudomonas aeruginosa and many other bacteria, has been extensively studied. The role of algU in Xylella fastidiosa, the cause of Pierce's disease of grapevines, was analyzed by mutation and whole-genome microarray analysis to define its involvement in aggregation, biofilm formation, and virulence. In this study, an algU::nptII mutant had reduced cell-cell aggregation, attachment, and biofilm formation and lower virulence in grapevines. Microarray analysis showed that 42 genes had significantly lower expression in the algU::nptII mutant than in the wild type. Among these are several genes that could contribute to cell aggregation and biofilm formation, as well as other physiological processes such as virulence, competition, and survival.  相似文献   

2.
目的:为了解猪链球菌2型强毒株05Z33转录调控因子Rgg的调控作用,用基因芯片方法分析野生株与rgg基因敲除突变体之间的差异表达基因。方法:用猪链球菌2型全基因组序列点样制备芯片,将芯片运用于rgg敲除株与野生株的基因表达差异研究,采用定量real-time PCR(qRT-PCR)验证表达谱结果。结果:在突变体中共发现45个基因表达量变化在2倍以上,其中19个基因表达上调,26个基因表达下调。这些基因在细菌毒力、免疫抗原、DNA合成和修复、基础代谢和ABC转运系统等方面起着重要作用。结论:转录调控因子Rgg是一个全局调控因子,但rgg敲除后并不影响猪链球菌的毒力。  相似文献   

3.
4.
5.
Agrobacterium tumefaciens growing in liquid attaches to the surface of tomato and Arabidopsis thaliana roots, forming a biofilm. The bacteria also colonize roots grown in sterile quartz sand. Attachment, root colonization, and biofilm formation all were markedly reduced in celA and chvB mutants, deficient in production of cellulose and cyclic beta-(1,2)-D-glucans, respectively. We have identified two genes (celG and cell) in which mutations result in the overproduction of cellulose as judged by chemical fractionation and methylation analysis. Wild-type and chvB mutant strains carrying a cDNA clone of a cellulose synthase gene from the marine urochordate Ciona savignyi also overproduced cellulose. The overproduction in a wild-type strain resulted in increased biofilm formation on roots, as evaluated by light microscopy, and levels of root colonization intermediate between those of cellulose-minus mutants and the wild type. Overproduction of cellulose by a nonattaching chvB mutant restored biofilm formation and bacterial attachment in microscopic and viable cell count assays and partially restored root colonization. Although attachment to plant surfaces was restored, overproduction of cellulose did not restore virulence in the chvB mutant strain, suggesting that simple bacterial binding to plant surfaces is not sufficient for pathogenesis.  相似文献   

6.
Extracellular polysaccharide (EPS) is produced by diverse bacterial pathogens and fulfills assorted roles, including providing a structural matrix for biofilm formation and more specific functions in virulence, such as protection against immune defenses. We report here the first investigation of some of the genes important for biofilm formation in Photorhabdus luminescens and demonstrate the key role of the phosphomannose isomerase gene, manA, in the structure of functional EPS. Phenotypic analyses of a manA-deficient mutant showed the importance of EPS in motility, insect virulence, and biofilm formation on abiotic surfaces as well as the requirement of this gene for the use of mannose as the sole carbon source. Conversely, this defect had no apparent impact on symbiosis with the heterorhabditid nematode vector. A more detailed analysis of biofilm formation revealed that the manA mutant was able to attach to surfaces with the same efficiency as that of the wild-type strain but could not develop the more extended biofilm matrix structures. A compositional analysis of P. luminescens EPS reveals how the manA mutation has a major effect on the formation of a complete, branched EPS.  相似文献   

7.
A mutation in the Xylella fastidiosa tonB1 gene resulted in loss of twitching motility and in significantly less biofilm formation as compared with a wild type. The altered motility and biofilm phenotypes were restored by complementation with a functional copy of the gene. The mutation affected virulence as measured by Pierce's disease symptoms on grapevines. The role of TonB1 in twitching and biofilm formation appears to be independent of the characteristic iron-uptake function of this protein. This is the first report demonstrating a functional role for a tonB homolog in X. fastidiosa .  相似文献   

8.
9.
10.
Flavodoxin (Fld) is a bacterial electron-transfer protein that possesses flavin mononucleotide as a prosthetic group. In the genomes of the Pseudomonas species, the mioC gene is the sole gene, annotated Fld, but its function remains unclear. In this study, phenotype microarray analysis was performed using the wild-type and mioC mutant of pathogenic Pseudomonas aeruginosa PAO1. Our results showed that the mioC mutant is very resistant to oxidative stress. Different antibiotics and metals worked differently on the sensitivity of the mutant. Other pleiotropic effects of mutation in the mioC gene, such as biofilm formation, aggregation ability, motility and colony morphology, were observed under iron stress conditions. Most of the phenotypic and physiological changes could be recovered in the wild type by complementation. Mutation of the mioC gene also influenced the production of pigments. The mioC mutant and mioC over-expressed complementation cells, over-produced pyocyanin and pyoverdine, respectively. Various secreted chemicals were also changed in the mutant, which was confirmed by (1) H NMR analysis. Interestingly, physiological alterations of the mutant strain were restored by the cell-free supernatant of the wild type. The present study demonstrates that the mioC gene plays an important role in the physiology of P.?aeruginosa and might be considered as a suitable drug target candidate in pathogenic P.?aeruginosa.  相似文献   

11.
Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases including Pierce’s disease of grapevines. X. fastidiosa is thought to induce disease by colonizing and clogging xylem vessels through the formation of cell aggregates and bacterial biofilms. Here we examine the role in X. fastidiosa virulence of an uncharacterized gene, PD1671, annotated as a two-component response regulator with potential GGDEF and EAL domains. GGDEF domains are found in c-di-GMP diguanylate cyclases while EAL domains are found in phosphodiesterases, and these domains are for c-di-GMP production and turnover, respectively. Functional analysis of the PD1671 gene revealed that it affected multiple X. fastidiosa virulence-related phenotypes. A Tn5 PD1671 mutant had a hypervirulent phenotype in grapevines presumably due to enhanced expression of gum genes leading to increased exopolysaccharide levels that resulted in elevated biofilm formation. Interestingly, the PD1671 mutant also had decreased motility in vitro but did not show a reduced distribution in grapevines following inoculation. Given these responses, the putative PD1671 protein may be a negative regulator of X. fastidiosa virulence.  相似文献   

12.
The group A streptococcus (GAS) Streptococcus pyogenes is known to cause self-limiting purulent infections in humans. The role of GAS pili in host cell adhesion and biofilm formation is likely fundamental in early colonization. Pilus genes are found in the FCT (fibronectin-binding protein, collagen-binding protein, and trypsin-resistant antigen) genomic region, which has been classified into nine subtypes based on the diversity of gene content and nucleotide sequence. Several epidemiological studies have indicated that FCT type 1 strains, including serotype M6, produce large amounts of monospecies biofilm in vitro. We examined the direct involvement of pili in biofilm formation by serotype M6 clinical isolates. In the majority of tested strains, deletion of the tee6 gene encoding pilus shaft protein T6 compromised the ability to form biofilm on an abiotic surface. Deletion of the fctX and srtB genes, which encode pilus ancillary protein and class C pilus-associated sortase, respectively, also decreased biofilm formation by a representative strain. Unexpectedly, these mutant strains showed increased bacterial aggregation compared with that of the wild-type strain. When the entire FCT type 1 pilus region was ectopically expressed in serotype M1 strain SF370, biofilm formation was promoted and autoaggregation was inhibited. These findings indicate that assembled FCT type 1 pili contribute to biofilm formation and also function as attenuators of bacterial aggregation. Taken together, our results show the potential role of FCT type 1 pili in the pathogenesis of GAS infections.  相似文献   

13.
14.
【目的】双组分系统Rcs感受外界环境变化,并调控细菌的适应性及生存等。本文探讨Rcs双组分系统传感器激酶RcsC对禽致病性大肠杆菌(avian pathogenic Escherichia coli,APEC)相关生物学特性及致病性的影响。【方法】采用Red同源重组的方法构建rcsC基因缺失株,并利用互补质粒构建互补株,然后比较野生株、基因缺失株与互补株的生长特性、运动性、生物被膜、凝集沉淀能力、致病力及毒力基因转录水平的差异。【结果】rcsC基因缺失不影响APEC的生长速度,然而,缺失RcsC导致APEC的运动能力升高、生物被膜形成能力降低和凝集能力增强。凝集试验结果显示rcsC基因有助于APEC的凝集沉降。细胞黏附入侵结果表明,rcsC在APEC侵袭DF-1细胞过程中发挥作用,而对黏附能力无影响。动物感染试验结果表明rcsC基因缺失能显著降低APEC的毒力。荧光定量PCR检测结果表明,rcsC基因缺失株中ompA、aatA、fyuA和luxS基因的转录水平均显著降低,而fimC和tsh基因的转录水平显著升高。【结论】RcsC参与调控APEC的运动性、生物被膜形成、凝集沉降和致病力。  相似文献   

15.
Bacterial plant pathogens often encounter reactive oxygen species (ROS) during host invasion. In foliar bacterial pathogens, multiple regulatory proteins are involved in the sensing of oxidative stress and the activation of the expression of antioxidant genes. However, it is unclear whether xylem‐limited bacteria, such as Xylella fastidiosa, experience oxidative stress during the colonization of plants. Examination of the X. fastidiosa genome uncovered only one homologue of oxidative stress regulatory proteins, OxyR. Here, a knockout mutation in the X. fastidiosa oxyR gene was constructed; the resulting strain was significantly more sensitive to hydrogen peroxide (H2O2) relative to the wild‐type. In addition, during early stages of grapevine infection, the survival rate was 1000‐fold lower for the oxyR mutant than for the wild‐type. This supports the hypothesis that grapevine xylem represents an oxidative environment and that X. fastidiosa must overcome this challenge to achieve maximal xylem colonization. Finally, the oxyR mutant exhibited reduced surface attachment and cell–cell aggregation and was defective in biofilm maturation, suggesting that ROS could be a potential environmental cue stimulating biofilm development during the early stages of host colonization.  相似文献   

16.
Xylella fastidosa, a gram-negative, xylem-limited bacterium, is the causal agent of several economically important plant diseases, including Pierce's disease (PD) and citrus variegated chlorosis (CVC). Until recently, the inability to transform or produce transposon mutants of X. fastidosa had been a major impediment to identifying X. fastidosa genes that mediate pathogen and plant interactions. A random transposon (Tn5) library of X. fastidosa was constructed and screened for mutants showing more severe symptoms and earlier grapevine death (hypervirulence) than did vines infected with the wild type. Seven hypervirulent mutants identified in this screen moved faster and reached higher populations than the wild type in grapevines. These results suggest that X. fastidosa attenuates its virulence in planta and that movement is important in X. fastidosa virulence. The mutated genes were sequenced and none had been described previously as antivirulence genes, although six of them showed similarity with genes of known functions in other organisms. One transposon insertion inactivated a hemagglutinin adhesin gene (PD2118), which we named HxfA. Another mutant in a second putative X. fastidosa hemagglutinin gene, PD1792 (HxfB), was constructed, and further characterization of these hxf mutants suggests that X. fastidosa hemagglutinins mediate contact between X. fastidosa cells, which results in colony formation and biofilm maturation within the xylem vessels.  相似文献   

17.
目的:鼠伤寒沙门菌在多种表面形成的生物膜对其致病性和引起食物中毒等方面起着重要作用,本研究探讨鼠伤寒沙门菌pStSR100质粒对细菌在不同材质表面生物膜形成的影响。方法:用LB(Luria-Bertani,LB)培养基和TSB(Tryptose Soya Broth,TSB)培养基分别将携带pStSR100质粒的野生株在96孔板与放置无菌小圆玻片的24孔板中静态培养48 h,用结晶紫半定量法确定生物膜形成的适宜培养基。将野生株与消除质粒的突变株,用结晶紫半定量法和激光共聚焦显微镜(Confocal Laser scanning microscopy,CLSM)观察其在聚苯乙烯培养板和小圆玻片表面形成生物膜的差异。结果:用LB培养时细菌生物膜的形成能力高于用TSB培养,LB培养基更适宜生物膜形成;结晶紫半定量法结果表明野生株比突变株在小圆玻片表面形成生物膜的能力明显增强,而在聚苯乙烯培养板表面两者则无明显差异;CLSM观察发现,野生株在小圆玻片表面形成融合成片的大克隆,突变株仅形成较小克隆。结论:鼠伤寒沙门菌pStSR100质粒能促进该菌在亲水性材质表面生物膜的形成,但其对该菌在疏水性材质表面生物膜的形成未见明显影响,这一新发现为进一步研究鼠伤寒沙门菌生物膜形成的调控机制,研制抗感染材料提供了理论和实验依据。  相似文献   

18.
A variety of stress situations may affect the activity and survival of plant-beneficial pseudomonads added to soil to control root diseases. This study focused on the roles of the sigma factor AlgU (synonyms, AlgT, RpoE, and sigma(22)) and the anti-sigma factor MucA in stress adaptation of the biocontrol agent Pseudomonas fluorescens CHA0. The algU-mucA-mucB gene cluster of strain CHA0 was similar to that of the pathogens Pseudomonas aeruginosa and Pseudomonas syringae. Strain CHA0 is naturally nonmucoid, whereas a mucA deletion mutant or algU-overexpressing strains were highly mucoid due to exopolysaccharide overproduction. Mucoidy strictly depended on the global regulator GacA. An algU deletion mutant was significantly more sensitive to osmotic stress than the wild-type CHA0 strain and the mucA mutant were. Expression of an algU'-'lacZ reporter fusion was induced severalfold in the wild type and in the mucA mutant upon exposure to osmotic stress, whereas a lower, noninducible level of expression was observed in the algU mutant. Overexpression of algU did not enhance tolerance towards osmotic stress. AlgU was found to be essential for tolerance of P. fluorescens towards desiccation stress in a sterile vermiculite-sand mixture and in a natural sandy loam soil. The size of the population of the algU mutant declined much more rapidly than the size of the wild-type population at soil water contents below 5%. In contrast to its role in pathogenic pseudomonads, AlgU did not contribute to tolerance of P. fluorescens towards oxidative and heat stress. In conclusion, AlgU is a crucial determinant in the adaptation of P. fluorescens to dry conditions and hyperosmolarity, two major stress factors that limit bacterial survival in the environment.  相似文献   

19.
20.
Bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most important diseases in rice. However, little is known about the pathogenicity mechanisms of Xoc. Here we have investigated the function of three HD-GYP domain regulatory proteins in biofilm formation, the synthesis of virulence factors and virulence of Xoc. Deletion of rpfG resulted in altered production of extracellular polysaccharides (EPS), abolished virulence on rice and enhanced biofilm formation, but had little effect on the secretion of proteases and motility. In contrast, mutational analysis showed that the other two HD-GYP domain proteins had no effect on virulence factor synthesis and tested phenotypes. Mutation of rpfG led to up-regulation of the type III secretion system and altered expression of three putative glycosyltransferase genes gumD, pgaC and xagB, which are part of operons directing the synthesis of different extracellular polysaccharides. The pgaABCD and xagABCD operons were greatly up-regulated in the Xoc ΔrpfG mutant, whereas the expression of the gum genes was unaltered or slightly enhanced. The elevated biofilm formation of the Xoc ΔrpfG mutant was dramatically reduced upon deletion of gumD, xagA and xagB, but not when pgaA and pgaC were deleted. Interestingly, only the ΔgumD mutant, among these single gene mutants, exhibits multiple phenotype alterations including reduced biofilm and EPS production and attenuated virulence on rice. These data indicate that RpfG is a global regulator that controls biofilm formation, EPS production and bacterial virulence in Xoc and that both gumD- and xagB-dependent EPS contribute to biofilm formation under different conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号