首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Sphaerostilbe repens utilizes nitrate and ammonium as nitrogen sources. Differentiation of mycelium into rhizomorphs and coremia was reduced in the presence of nitrate and completely inhibited in the absence of calcium. The most abundant free amino acids were, in decreasing order: alanine, glutamine, glutatomic acid, serine, aspartic acid, γ-aminobutyric acid, arginine and threonine. These compounds represented 90% of the total amino acid pool.
The free amino acid composition did not vary with cultural conditions although concentrations of individual amino acids differed. In ammonium-grown cells, γ-aminobutyric acid increased in concentration and glutamate, aspartate and alanine decreased. Calcium-deficient media reduced amino acid concentrations, especially of arginine and ornithine. Amino acid contents increased during the growth period and were higher in rhizomorphs than in vegetative mycelia.  相似文献   

2.
The concentration of free amino acids and total nitrogen was studied in needles, stems and roots of seedlings of Pinus sylvestris L. for five weeks during the second growth period ("summer"). In one group of seedlings the source/sink relation was disturbed through removal of the terminal buds. The seedlings were cultivated in artificial year-cycles in a climate chamber.
Total nitrogen increased in needles and sterns of intact seedlings in the beginning of the "summer" and decreased during shoot growth. In seedlings, from which the buds had been removed, nitrogen remained at high levels in the primary needles and accumulated in steins and roots. The results are consistent with utilization of nitrogen in older needles and in the stem during shoot elongation.
The pool of free amino acids increased in the beginning of the "summer" and decreased after bud break in primary needles, stems and roots. Arginine and glutamine, in the roots also asparagine, were the dominating amino acids (amides included). Together, these compounds (plus glutamate and aspartate) contributed about 90% of the nitrogen in the amino acid pool in all organs. In primary needles and in the stem, arginine predominated at the end of hardening (75–85% of the amino acid nitrogen). Free amino acids contributed at most ca 10% of the total nitrogen in primary needles, where the ratio of free amino acid nitrogen: total nitrogen was highest at the end of dormancy and in the early "summer". Free amino acids accumulated after bud removal in primary needles and especially in stems and roots. Glutamine became relatively more dominant than arginine in the different organs.
The observations are consistent with the role of arginine and glutamine for storage and transport of nitrogen in conifers. Because of the low concentrations of amino acid nitrogen in the primary needles, arginine is not considered a major nitrogen reserve in needles of Scots pine seedlings.  相似文献   

3.
1. Changes in concentrations of free amino acids and amides have been determined in TMV-infected tobacco leaf discs and in comparable uninfected discs during the time of virus formation. 2. During the period of rapid virus formation the infected discs show a transitory deficiency (as compared to uninfected discs) in glutamine, asparagine, aspartic acid, glutamic acid, serine, and to a lesser extent in valine, threonine, and proline. About 100 hours before this time smaller deficiencies in the concentrations of these components also occur. The latter effect is probably associated with the early synthesis of a non-virus protein in infected tissue. 3. Comparison of the above effects with the known amino acid composition of TMV indicates that it is unlikely that the virus protein is synthesized by condensation of appropriate free amino acids. Rather, the deficiencies observed appear to result from removal of ammonia from the nitrogen pool during synthesis of new proteins in infected tissue. Equilibrium shifts resulting from ammonia withdrawal probably account for the observed deficiencies in amides and free amino acids. TMV protein, therefore, appears to be synthesized de novo, from non-protein nitrogen, probably ammonia. 4. It is suggested that the changes in free amino acid concentrations induced by virus formation may account for some of the symptoms observed in infected plants.  相似文献   

4.
The content of the carbohydrates glucose, fructose and sucrose was determined in spring barley anthers at different stages of maturity. During maturation the sucrose content of the anthers increased markedly. The following 17 free amino acids were detected in anthers of different stages of maturity: aspartic acid, glutamic acid, serine, alanine, arginine, leucine, isoleucine, lysine, α-aminobutyric acid, glutamine, proline, tyrosine, phenylalanine, valine, threonine, cystine and glycine. Quantitative analysis was only carried out in amino acids present in higher concentrations in the analysed samples. These were: aspartic acid, glutamic acid, α-aminobutyric acid, proline, serine, valine and glutamine, and a mixture of amino acids (leucine, isoleucine, valine and phenylalanine). The total content of free amino acids increased with increasing maturity of the anthers. However, not all amino acids followed contributed to this increase, but only proline, glutamic acid, aspartic acid and glutamine. A small difference was found in the variety Gopal in which the aspartic acid content did not increase significantly, but the content of the mixture of amino acids and serine did. With the exception of green anthers of the variety Firlbecks Union, proline was present in the highest concentration in all samples analysed.  相似文献   

5.
Yeast cells grown under optimal and suboptimal concentrations of biotin were analyzed for the amino acid content of their soluble pool and cellular protein. Optimally grown yeast cells exhibited a maximum amino acid content after 18 hr of growth. Biotin-deficient cells were depleted of all amino acids at 26 and 43 hr, with alanine, arginine, aspartate, cysteine, glutamate, isoleucine, leucine, lysine, methionine, serine, threonine, and valine being present in less than half the concentration observed in biotin-optimal cells. At early time intervals, the amino acid pool of biotin-deficient yeast contained lower concentrations of all amino acids except alanine. After more prolonged incubation, several amino acids accumulated in the pool of biotin-deficient yeast, but citrulline and ornithine accumulated to appreciable levels. The addition of aspartate to the growth medium resulted in a decrease in the amino acid content of biotin-optimal cells but caused a marked increase in the concentration of amino acids in biotin-deficient cells. The pools of biotin-deficient yeast grown in the presence of aspartate displayed a marked reduction in every amino acid with the exception of aspartate itself. These data provide evidence that the amino acid content of yeast cells and their free amino acid pools are markedly affected by biotin deficiency as well as by supplementation with aspartate, indicating that aspartate plays a major role in the nitrogen economy of yeast under both normal as well as abnormal nutritional conditions.  相似文献   

6.
Effect of amino acids on the nitrogenase system of Klebsiella pneumoniae   总被引:27,自引:19,他引:8  
Yoch, D. C. (South Dakota State University, Brookings), and R. M. Pengra. Effect of amino acids on the nitrogenase system of Klebsiella pneumoniae. J. Bacteriol. 92:618-622. 1966.-The effect of exogenous amino acids and the free amino acid pool on the synthesis of the nitrogenase system of Klebsiella pneumoniae M5al (formerly Aerobacter aerogenes M5al) was investigated. When an actively N(2)-fixing culture was used to inoculate a medium containing a limiting concentration of NH(4) (+), an induction lag period was observed. When either a single amino acid or a mixture of amino acids was substituted at the same nitrogen concentration, growth was uninterrupted by the induction period. It appears that a step or steps in the formation of the nitrogenase system are repressed by NH(4) (+) and are not affected by amino acid N. The amino acids, far from repressing formation of nitrogenase as does NH(4) (+), actually stimulate its formation. It appears that both free and amino nitrogen are used simultaneously. The amino acids that served concomitantly with N(2) as a source of nitrogen were: aspartic acid, serine, threonine, leucine, and histidine. Of these amino acids, it was shown that aspartic acid is readily taken up by the cells. Of the amino acids not serving as an immediate nitrogen source, isoleucine is not taken up by the cells. The free amino acid pool of the cells was measured at the onset and termination of the induction period. Ninhydrin-positive material in the amino acid pool was depleted by 35% during the induction period.  相似文献   

7.
Barley (Hordeum vulgare L. cv Golden Promise) plants were grown in a continuous culture system in which the root and shoot ammonia and amino acid levels were constant over a 6-hour experimental period. Methionine sulfoximine (MSO), 1 millimolarity when added to the culture medium, caused a total inactivation of root glutamine synthetase with little effect on the shoot enzyme. Root ammonia levels increased and glutamine levels decreased, irrespective of whether the plants were grown in 1 millimolar nitrate or 1 millimolar ammonia. Levels of glutamate, aspartate, serine, threonine, and asparagine all increased. There was little alteration in the amino acid and ammonia levels in the shoot, suggesting that MSO is not rapidly transported.

The addition of azaserine (25 micrograms per milliliter) to nitrate-grown plants caused a rapid increase in root ammonia, glutamine, and serine levels with a corresponding decrease in glutamate, aspartate, and alanine. Glutamine levels also increased in the shoot.

The in vivo effect of MSO and azaserine was as would be predicted by their known in vitro inhibitory action if the glutamine synthetase/glutamate synthase pathway of ammonia assimilation was in operation.

  相似文献   

8.
氮素水平对花生氮素代谢及相关酶活性的影响   总被引:10,自引:0,他引:10       下载免费PDF全文
 在大田高产条件下研究了氮素水平对花生(Arachis hypogaea)可溶性蛋白质、游离氨基酸含量及氮代谢相关酶活性的影响, 结果表明, 适当提高氮素水平既能增加花生各器官中可溶性蛋白质和游离氨基酸的含量, 又能提高硝酸还原酶、谷氨酰胺合成酶和谷氨酸脱氢酶等氮素同化酶的活性, 使其达到同步增加; 氮素水平过高虽能提高硝酸还原酶和籽仁蛋白质含量, 但谷氨酰胺合成酶(GS)和谷氨酸脱氢酶(GDH)的活性下降; N素施肥水平不改变花生植株各器官中可溶性蛋白质、游离氨基酸含量以及硝酸还原酶(NR)、谷氨酰胺合成酶、谷氨酸脱氢酶活性的变化趋势, 但适量施N (A2和A3处理)使花生各营养器官中GS、GDH活性提高; 氮素水平对花生各叶片和籽仁中GS、GDH活性的高低影响较大, 但对茎和根中GDH活性大小的影响较小。  相似文献   

9.
A photoautotrophic soybean suspension culture was used to study free amino acid pools during a subculture cycle. Free amino acid analysis showed that the intracellular concentrations of asparagine, serine, glutamine, and alanine reached peaks of 200, 10, 9 and 7 mM, respectively, at specific times in the 14-day subculture cycle. Asparagine and serine levels peaked at day 14 but glutamine level rose quickly after subculture, peaking at day three and then declined gradually. Roughly similar patterns were found in the conditioned culture medium although the levels were 1000-fold lower than those found in cells. Photoautotrophic (SB-P) and photomixotrophic (SB-M) cultures were quantitatively similar with regard to free asparagine and serine but not glutamine or free ammonia. Heterotrophic (SB-H) cells had 81–85% less free asparagine on day seven than did SB-M or SB-P cells. Hence, similar to the phloem sap of a soybean plant, asparagine, glutamine, alanine and serine were the predominant amino acids in photoautotrophic soybean cell cultures. Varying the amount of total nitrogen in culture medium for two subcultures at 10, 25, 50, and 100% Of normal levels showed that growth was inhibited only at the 10 and 25% levels but that growth on medium containing 50% of the normal nitrogen was as good as that on 100% nitrogen. Moreover, cellular chlorophyll content correlated exceptionally well with initial nitrogen content of the medium. Thus, the photosynthesis of SB-P cells was not limited by chlorophyll content. SB-P cells grown for two subcultures on 10% nitrogen contained very low free amino acid levels and only 1% of the free ammonia levels found in cells growing on a full nitrogen complement.Abbreviations SB-P photoautotrophic soybean cells (no sucrose, high CO2, high light) - SB-M photomixotrophic soybean cells (1% w/v sucrose, high light) - SB-H heterotrophic soybean cells (3% sucrose, dark)  相似文献   

10.
Free amino acids in 6-year-old kiwifruit vines [Actinidia deliciosa(A. Chev.) C. F. Liang et A. R. Ferguson] were measured overthe course of 1 year using components obtained from whole-vineharvests. Tissues examined from the perennial structure consistedof the wood and cortex of structural roots, wood and bark ofstem, leader and 1-year-old fruiting canes. Free acids in theannual growth (fine roots, flowers, fruit, leaves and non-fruitingshoots) were also measured. The range of amino acids extracted indicated that kiwifruitconforms to a conventional pattern of nitrogen metabolism. Acidspresent in greatest concentration depended on tissue type andsampling time. In perennial components and fine roots, arginineand glutamine were the predominant species, followed by gamma-aminobutyrate,aspartate, glutamate, alanine and valine. Generally, maximumconcentrations of all free acids were measured in a 10-weekperiod around budbreak. These same acids, plus asparagine, serineand threonine, were also prevalent in annual growth. In leaves,flowers and non-fruiting shoots, concentrations were greatestin the young tissue and declined with age. By contrast, concentrationsof arginine, asparagine and glutamine in fruit peaked approximately10 weeks after anthesis, subsequent to the cell division phaseof growth. During the year, free arginine averaged 44, 48 and 58 % of thetotal N in the fine roots, and the cortex and wood of structuralroots, respectively (the quantity of total N and amino-N inother components of the structural framework was much less thanthat in root tissue). Arginine was the principal N-containingspecies measured in xylem sap vacuum-extracted from 1-year-oldcanes over winter. During the period of vegetative growth, however,glutamine and nitrate were the principal N-transport forms present.The study highlights the importance of the fine root systemas the primary location of nitrogenous reserves in this plantand identifies arginine as the dominant N-storage form. Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson, amino acid composition, kiwifruit, nitrogen, whole-plant harvesting  相似文献   

11.
Weissman , Gerard S. (Rutgers U., Camden, N. J.) Influence of ammonium and nitrate on the protein- and amino acids in shoots of wheat seedlings. Amer. Jour. Bot. 46(5): 339–346. 1959.—Total and protein nitrogen per shoot of wheat seedlings grown with endosperm attached increased at a steady rate during a 96-hr. growth period, and protein nitrogen, as a percentage of total nitrogen, remained constant at about 53%. Total and protein nitrogen concentration was greatest for 24-hr. shoots and declined as the shoots became older. Total and protein nitrogen were determined in 96-hr. shoots of seedlings grown with endosperm attached but also supplied with ammonium, nitrate, or both in the culture solution. Total nitrogen was greatest in shoots supplied with ammonium, but only 38% was in the form of protein. Maximum protein synthesis occurred in shoots grown in both ammonium and nitrate and protein nitrogen as a percentage of total nitrogen approximated that achieved in shoots lacking nitrogen in the culture solution. The protein amino acid composition of 48-, 72-, and 96-hr. shoots was very similar but differed from 24-hr. shoots which contained higher percentages of arginine and lysine and lower percentages of alanine and threonine. This may be correlated with the higher proportion of meristematic cells in 24-hr. shoots. The protein amino acids in shoots grown with ammonium resembled that of shoots lacking nitrogen in the culture solution, but nitrate shoot protein contained a higher percentage of arginine and a lower percentage of lysine. Nitrate may stimulate the formation of enzymes, possibly of a nitrate-reducing system, with high arginine- low lysine content. Free asparagine and glutamine were both at a maximum in ammonium shoots and at a minimum in nitrate shoots, but asparagine predominated in shoots supplied with ammonium while glutamine was greatest in nitrate shoots. Aspartic acid, asparagine, and glutamine appeared to have ammonia-storage functions, but glutamic acid appeared to be primarily concerned with protein synthesis. Amino acid accumulation was greatest in shoots supplied with both ammonium and nitrate. Protein synthesis in these appeared to be limited by inadequate concentrations of glutamic acid and proline. A hypothesis is proposed in explanation of the high glutamic acid concentration in shoots provided with ammonium and nitrate.  相似文献   

12.
Suspension cultured cells of tomato (Lycopersicon esculentum Mill. cv VFNT Cherry) adapted to water stress induced with polyethylene glycol 6000 (PEG), exhibit marked alterations in free amino acid pools (Handa et al. 1983 Plant Physiol 73: 834-843). Using computer simulation models the in vivo rates of synthesis and utilization and compartmentation of free amino acid pools were determined from 15N labeling kinetics after substituting [15N]ammonium and [15N]nitrate for the 14N salts in the culture medium of cell lines adapted to 0% and 25% PEG. The 300-fold elevated proline pool in 25% PEG adapted cells is primarily the consequence of a 10-fold elevated rate of proline synthesis via the glutamate pathway. Ornithine was insufficiently labeled to serve as a major precursor for proline. Our calculations suggest that the rate of proline synthesis only slightly exceeds the rate required to sustain both protein synthesis and proline pool maintenance with growth. Mechanisms must operate to restrict proline oxidation in adapted cells. The kinetics of labeling of proline in 25% PEG adapted cells are consistent with a single, greatly enlarged metabolic pool of proline. The depletion of glutamine in adapted cells appears to be a consequence of a selective depletion of a large, metabolically inactive storage pool present in unadapted cultures. The labeling kinetics of the amino nitrogen groups of glutamine and glutamate are consistent with the operation of the glutamine synthetase-glutamate synthase cycle in both cell lines. However, we could not conclusively discriminate between the exclusive operation of the glutamine synthetase-glutamate synthase cycle and a 10 to 20% contribution of the glutamate dehydrogenase pathway of ammonia assimilation. Adaptation to water stress leads to increased nitrogen flux from glutamate into alanine and γ-aminobutyrate, suggesting increased pyruvate availability and increased rates of glutamate decarboxylation. Both alanine and γ-aminobutyrate are synthesized at rates greatly in excess of those simply required to maintain the free pools with growth, indicating that these amino acids are rapidly turned over. Thus, both synthesis and utilization rates for alanine and γ-aminobutyrate are increased in adapted cells. Adaptation to stress leads to increased rates of synthesis of valine and leucine apparently at the expense of isoleucine. Remarkably low 15N flux via the aspartate family amino acids was observed in these experiments. The rate of synthesis of threonine appeared too low to account for threonine utilization in protein synthesis, pool maintenance, and isoleucine biosynthesis. It is possible that isoleucine may be deriving carbon skeletons from sources other than threonine. Tentative models of the nitrogen flux of these two contrasting cell lines are discussed in relation to carbon metabolism, osmoregulation, and nitrogenous solute compartmentation.  相似文献   

13.
Spinach plants were grown in hydroponic culture provided with variable limiting amounts of N. During a complete diurnal cycle, growth of the root and shoot parts, as well as levels of soluble and insoluble sugars and of free amino acids, were monitored. No clear relationship could be detected between the level of N feeding and the levels of free sugars and amino acids. Analysis of variance revealed that the variances in the relative growth rates of plant root and shoot could be correlated with the levels of sugars and amino acids. Root amino acid concentration could be correlated with shoot amino acid concentration and root sugar concentration. No relationship was found between the variances in root and shoot free sugar concentrations.  相似文献   

14.
The changes in hind leg tissue (muscle and skin) amono acid pool size and arteriovenous balance were measured in rats subjected to 0–90 min of cold exposure (4°C). Tissue free amino acid pools presented a different composition pattern from protein amino acids. Muscle rapidly reacted to cold exposure by releasing small amounts of some amino acids (alanine, aspartate), with only small changes in pool size during the first 30 min. Amino acid oxidation was very limited during the whole period of cold exposure, since at all times tested there was either nil ammonia efflux or net absorption of ammonia and glutamine; i.e. the muscle was in positive nitrogen balance throughout the period studied. Thus most of the amino acid nitrogen taken up from the blood and not found in the free amino pools must have been incorporated into protein, since it was not oxidized, as shown by the glutamine and ammonia blance. The data on amino acid incorporation into proteins indicate that hind leg protein turnover is rapidly and widely modulated from a low initial setting upon cold exposure to a higher protein synthesis rate immediately afterwards, suggesting that protein turnover may have an important role in short-term events in cold-exposed muscle, in addition to its influence in long-term adaptation.  相似文献   

15.
The leaf-litter fungus Coprinus cinereus maintains a pool of free amino acid in its mycelium. When the organism is grown under conditions of high nitrogen availability with 13.2 mmol.L-1 L-asparagine as the nitrogen source, the primary constituents of this pool are glutamine, alanine, and glutamic acid. Together these 3 amino acids comprise approximately 70% of the pool. Nitrogen deprivation reduces the size of the free amino acid pool by 75%, and neither a high concentration of ammonium nor a protein nitrogen source support a similar pool size as L-asparagine. Nitrogen deprivation also reduces the concentration of glutamine to the pool while increasing glutamate. Concomitant with this shift is a marked increase in mycelial ammonium.  相似文献   

16.
During development (expansion), the cotton leaf passes through a stage in which it is highly susceptible to ozone. This period of susceptibility occurs after the maximum expansion rate but before complete expansion occurs. The period of maximum susceptibility corresponds to a minimum concentration of soluble sugars and free pool amino acids. Specific amino acids such as aspartate, serine, threonine, glutamate, asparagine, alanine, glycine, valine, isoleucine, leucine, histidine, and tryptophan tended to reach a minimum concentration at about the same time leaves were susceptible to ozone. Ozone exposure during the susceptible period is manifested by visible leaf flecking of the upper surface and a dramatic (up to 2 fold) increase in total free pool amino acids. Most individual amino acids tended to increase except for phenylalanine, alanine, phosphoserine, phosphoethanolamine, and ethanolamine. Soluble protein is decreased but not to the same extent that the free pool amino acids increase. Because there is ample evidence that ozone enters the leaf during nonsusceptible periods as well as susceptible periods, it is postulated that ozone damage results because of the depletion of soluble reserves (carbohydrates and amino acids). Perhaps repair of damage cannot occur.  相似文献   

17.
The salt tolerance of three cultivars of Pisum sativum L. asdefined by root growth on saline substrate was in the orderDan > Alaska > Laxton Progress. The total content of freeamino acids decreased in Alaska, but not in Laxton Progress,with increasing salinity, while the content of the free basicamino acids increased with salinity. In both cultivars salinityinduced accumulation of free proline, but not enough to maintainthe osmotic adaptation of the cytoplasm. Proline accumulationcould not account for the greater tolerance of the Alaska cultivar.Both cultivars contain large amounts of glutamic acid and homoserine.The amino acid composition of protein of the Alaska cultivaris affected much more by salinity than is that of Laxton Progress.In Alaska salinity induces an increase in aspartic and glutamicacids, threonine, serine, leucine and isoleucine. The totalcontent of basic amino acids decreases with salinity. The proteinof Laxton Progress is very rich in leucine and its amount slightlydecreases with salinity. In the most tolerant cultivar, Dan,there is more proline in the protein than in the other two cultivarsand its content of leucine increases with salinity. The onlyfeatures which show some correlation with salinity toleranceare proline content (Dan > Alaska > Laxton Progress) andan increase in leucine content in the protein, with increasingsalinity. Pisum sativum L, pea, amino acid composition of roots, salinity  相似文献   

18.
Tulip bulbs cv. Apeldoorn are dry stored at 5°C for 12 weeks to ensure subsequent optimal flowering when planted in the greenhouse at higher temperatures of 17–20°C. Both temperature and duration of the cold treatment determine the subsequent rate of the shoot elongation, the time until anthesis and the flower size, pigmentation and water content. In search for cold-specific physiological changes, possibly related to the development of the potential of proper flowering (flowering preparation), we studied the redistribution of organic nitrogen in both cooled (5°C) and non-cooled (17°C) bulbs.
During 12 weeks of dry storage, the total protein- and free amino acid-nitrogen content decreased in the scales, whereas the opposite was found in the basal plate (with root primordia) and the shoot. In the shoot, this occurred significantly more at 17°C than at 5°C. At the same time, there was a tissue-specific change in the free amino acid composition in both cooled and non-cooled bulbs. Changes specific for the 5°C treatment were only found for the alanine content, in both the basal plate (with root primordia) and the shoot, and for the proline, asparagine, threonine, glycine and isoleucine content, in the shoot only. These changes are, for the greater part, completed within the first 6–8 weeks of dry storage. Bulbs stored for such a short period of time at 5°C still show flowering disorders. Thus, flowering preparation is only partly accompanied by changes in free amino acid contents.  相似文献   

19.
Abstract— —High circulating levels of l -methionine produced by inclusion in the diet or parenteral injection of the amino acid caused alterations in the free amino acid pattern of liver and brain tissues. Acute effects following l -methionine injection were more pronounced than those following long term feeding where adaptation played a role. The net effect following parenteral injection was to increase the total free amino acids of liver while decreasing those of brain. Individually, hepatic levels of aspartic acid, threonine, serine, glutamine, glutamic acid, glycine, and alanine were depressed while levels of taurine, cystathionine, methionine, lysine, and ornithine were markedly elevated. Brain levels of aspartic acid, threonine, serine, glutamic acid, glycine, alanine, and γ-aminobutyric acid were markedly depressed and increased levels of cystathionine, methionine, lysine, and glutamine were observed. A generalized aminoaciduria occurred shortly after excessive methionine intake. Disruption of the free amino acid pools was of two kinds. The first depended on the continued presence of excess l -methionine, the second did not.  相似文献   

20.
Five amino acids are accumulated during vegetative growth of Neurospora crassa, particularly.during the prestationary growth phase. Alanine, glutamine, glutamate, arginine and ornithine.comprised over 80% of the total amino acid pool in the mycelium. Amino acid pools of different amino acid auxotrophs were followed during the partial transformation of a mycelial mat into an aerial mycelium. The mycelial mat under starvation and in direct contact with air rapidly formed aerial mycelium, which produced thereafter a burst of conidia. During this process,glutamine and alanine in the mycelial mat were consumed more rapidly than other amino acids;in the growing aerial mycelium, glutamate and glutamine were particularly accumulated. Of the amino acids that were initially accumulated in the mycelial mat, only a high glutamine pool was required for aerial mycelium growth induced by starvation. This requirement for glutamine could not be satisfied by a mixture of the amino compounds that are synthesized via glutamine amidotransferase reactions. It is proposed that glutamine serves as a nitrogen carrier from the mycelial mat to the growing aerial mycelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号