首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the difference in the CD14 and CD16 expression, two subsets of monocytes were identified in human and other mammalian blood. These subsets have different patterns of adhesion molecules and chemokine receptors that suggests the different mode of their interaction with endothelium and tissue traffic. Here, we investigated the ability of CD14+CD16+ and CD14++CD16 monocytes to adhere to endothelial cell monolayer in presence or absence of pro- and anti-inflammatory cytokines. We demonstrated that CD14+CD16+ monocytes had a higher level of adhesion to intact monolayer of endothelial cells than CD14++CD16 monocytes. Adhesion of CD14++CD16 and CD14+CD16+ monocytes significantly increased in the presence of TNFα or its combination with other cytokines. IFNγ and IL-4 alone did not affect the adhesion of monocytes. These results show that CD14++CD16 and CD14+CD16+ monocytes can be recruited to the inflamed endothelium, but CD14+CD16+ monocytes adhere to endothelial cells without inflammations twice as strongly as CD14++CD16 monocytes.  相似文献   

2.

Background

Regulatory T cells (Tregs) were shown to be central in maintaining immunological homeostasis and preventing the development of autoimmune diseases. Several subsets of Tregs have been identified to date; however, the dynamics of the interactions between these subsets, and their implications on their regulatory functions are yet to be elucidated.

Methodology/Principal Findings

We employed a combination of mathematical modeling and frequent in vivo measurements of several T cell subsets. Healthy BALB/c mice received a single injection of either hCDR1 - a tolerogenic peptide previously shown to induce Tregs, a control peptide or vehicle alone, and were monitored for 16 days. During this period, splenocytes from the treated mice were analyzed for the levels of CD4, CD25, CD8, CD28 and Foxp3. The collected data were then fitted to mathematical models, in order to test competing hypotheses regarding the interactions between the followed T cell subsets. In all 3 treatment groups, a significant, lasting, non-random perturbation of the immune system could be observed. Our analysis predicted the emergence of functional CD4 Tregs based on inverse oscillations of the latter and CD4+CD25 cells. Furthermore, CD4 Tregs seemed to require a sufficiently high level of CD8 Tregs in order to become functional, while conversion was unlikely to be their major source. Our results indicated in addition that Foxp3 is not a sufficient marker for regulatory activity.

Conclusions/Significance

In this work, we unraveled the dynamics of the interplay between CD4, CD8 Tregs and effector T cells, using, for the first time, a mathematical-mechanistic perspective in the analysis of Treg kinetics. Furthermore, the results obtained from this interdisciplinary approach supported the notion that CD4 Tregs need to interact with CD8 Tregs in order to become functional. Finally, we generated predictions regarding the time-dependent function of Tregs, which can be further tested empirically in future work.  相似文献   

3.
We evaluated the changes in CD4 + CD25high regulatory T (Treg) cells and FOXP3 mRNA expression in patients with advanced esophageal cancer as well as its clinical significance. For this purpose, the frequencies of peripheral blood Treg cells in 68 patients with advanced esophageal cancer and 40 healthy controls were determined by flow cytometry, and FOXP3 mRNA expression in Treg cells of 40 patients was determined by RT–PCR. The data show that Treg cell numbers were significantly higher (P < 0.01) in esophageal cancer patients (1.82 ± 0.54% of CD4 + T cells) as compared with healthy controls (1.52 ± 0.70% of CD4+ T cells). Treg cell numbers in the patients were significantly higher (P < 0.05) before chemotherapy (1.82 ± 0.54% of CD4 + T cells) than after chemotherapy (1.66 ± 0.58% of CD4 + T cells). Expression of the FOXP3 mRNA in the patients was significantly lower (P < 0.05) after chemotherapy (0.266 ± 0.028% of CD4 + T cells) than before chemotherapy (0.318 ± 0.027% of CD4 + T cells). It was, therefore, concluded that Treg cell numbers as well as FOXP3 mRNA expression in advanced esophageal cancer patients were significantly decreased after chemotherapy. Notably, FOXP3 gene may thus be involved in regulating the numbers and function of Treg cells in advanced esophageal cancer patients receiving chemotherapy.  相似文献   

4.
The aim of this study was to estimate the distribution and density of a representative set of activating and inhibitory receptors on gated natural killer (NK) cells, as well as on their bright and dim subsets, and to correlate the receptor expression with NK cell activity for healthy individuals on CD3CD16+ NK cells. We show that in 43 healthy controls NK cell activity against K562 target cells was 37.34% (E:T, 80:1) by standard chromium release assay. The expression of receptors on NK cells and their subsets was analyzed by flow cytometry. The cytotoxic CD3CD16bright NK subset constituted 78.97%, while the regulatory CD3CD16dim NK subset constituted 21.03% of NK cells. We show the distribution of NKG2D, CD161, CD158a, and CD158b receptors on CD3CD16+ NK cells in peripheral blood lymphocytes (PBLs), on gated NK cells, and on the CD3CD16bright and CD3CD16dim subsets. Contrary to CD158a and CD158b killer immunoglobulin-like receptors (KIRs), there is a significant positive correlation of NKG2D and CD161 expression with NK cytotoxicity. We show the kinetics of change in CD3CD16+NK/K562 conjugate composition, together with the stronger target binding capacity of CD16bright NK cells. Furthermore, we show that after coculture of PBLs with K562 the expression of CD107a, a degranulation marker, on CD3CD16+NK cells and subsets is time dependent and significantly higher on the cytotoxic CD3CD16bright NK subset. The novel data obtained regarding expression of NK cell activating and inhibitory receptors for healthy individuals may aid in detecting changes that are associated with various diseases.  相似文献   

5.
6.
Regulation by the NK and T cell surface receptor CD244 in mice and humans depends both on engagement at the cell surface by CD48 and intracellular interactions with SAP and EAT-2. Relevance to human disease by manipulating CD244 in mouse models is complicated by rodent CD2 also binding CD48. We distinguish between contributions of mouse CD244 and CD2 on engagement of CD48 in a mouse T cell hybridoma. CD2 and CD244 both contribute positively to the immune response as mutation of proline-rich motifs or tyrosine motifs in the tails of CD2 and CD244, respectively, result in a decrease in antigen-specific interleukin-2 production. Inhibitory effects of mouse CD244 are accounted for by competition with CD2 at the cell surface for CD48. In humans CD2 and CD244 are engaged separately at the cell surface but biochemical data suggest a potential conserved intracellular link between the two receptors through FYN kinase. We identify a novel signaling mechanism for CD244 through its potential to recruit phospholipase C-γ1 via the conserved phosphorylated tyrosine motif in the tail of the adaptor protein EAT-2, which we show is important for function.The CD2 family of cell surface receptors is differentially expressed on immune cells (1, 2) and is involved in regulating both innate and adaptive immunity (3). These receptors have related extracellular immunoglobulin superfamily domains and interact either homophilically or heterophilically within the CD2 family (1, 2). The CD2 family contains a subgroup of receptors termed the SLAM family that have a conserved tyrosine signaling motif in their cytoplasmic region TXYXX(I/V) referred to as an immunoreceptor tyrosine-based switch motif (ITSM).2 The SLAM family of receptors include CD244 (2B4), NTB-A (Ly-108), CD319 (CRACC, CS-1), CD150 (SLAM), CD84, and CD229 (Ly-9). Defects in signaling and aberrant expression of these receptors have been implicated in several immunodeficiency and autoimmune disorders in humans and mice (48). Within the SLAM family, CD244 is unusual in that it shares its ligand CD48 with the receptor CD2 in rodents, whereas in humans CD2 has evolved to interact with CD58 (9). The affinity of CD244 for CD48 in rodents is 6–9-fold higher than the still functionally relevant CD2/CD48 interaction (10). CD244 and CD2 have different cytoplasmic regions comprised of tyrosine motifs or proline-rich motifs, respectively.CD244 is predominantly found on NK cells and cytotoxic T cells and primarily characterized as an activating receptor (1115). CD2 is found on the same cells as CD244 but is also expressed on all T cells, both activated and resting, and has an activating or costimulatory function upon engagement of ligand (9). The tyrosine motifs found in the cytoplasmic tail of CD244 have been shown to bind the SH2 domains of cytoplasmic adaptor proteins SAP and EAT-2 and FYN kinase (1618) and are important to its function (5, 1921). In contrast to SH2 interactions of CD244, several SH3 domain-mediated interactions have been reported for the cytoplasmic region of CD2 including CD2AP/CMS, CIN85, FYN, and LCK (2226).The activating function of CD244 was called into question when a study using cells from a CD244 knock-out mouse showed that CD244 had an inhibitory effect as loss of CD244 resulted in enhanced NK killing of target cells (27). This suggested that previous results in mice where positive effects were seen may have been due to blocking CD244 ligand engagement as opposed to cross-linking with antibodies against CD244 (27). This has led to proposals that there are differences in function between mouse and human CD244 as there is more evidence to suggest that human CD244 is a positive regulator enhancing cytotoxicity and cytokine production (13, 15, 28). However, other more recent studies have shown the mouse CD244/CD48 interaction to be important for cytokine production and effector functions such as cytotoxicity against tumor targets in CD244-deficient mice (29). Long and short forms of CD244 have been cloned from mice with the short form being described as activating and the long form inhibitory (27, 30). Only the long form of CD244 is present in humans and is regarded as activating (14).Positive signaling by CD244 has been attributed to the recruitment of SAP (18), which is a signaling adaptor molecule comprised of a single SH2 domain encoded by the SH2D1A gene and has the ability to recruit the kinase FYN by binding its SH3 domain (31, 32). Loss of the SAP/FYN interaction can lead to X-linked lymphoproliferative disease in humans (17). The molecular basis of in vitro inhibitory effects observed with CD244 in mice on ligation with mAb or ligand remains elusive (33). Protein tyrosine and inositol phosphatases have been reported to associate with CD244 (18, 19, 34) but our studies using surface plasmon resonance found them to be very weak and unlikely to bind competitively compared with the SAP family of adaptors or FYN (16). The SAP-related adaptor EAT-2 has been reported to have an active inhibitory effect that is dependent on tyrosine motifs in the tail of EAT-2 (35) but its mechanism is not understood. The only interaction reported for the tail of EAT-2 is with FYN kinase and studies overexpressing EAT-2 in a T cell hybridoma resulted in increased IL-2 production upon antigen stimulation (16).The conservation between mouse and human CD244 cytoplasmic regions and associated adaptors suggests that both function in a similar way. We have explored the main difference between mouse and human CD244, which is the extracellular interaction through CD48 ligation in the mouse. This has revealed that inhibitory effects of CD244 ligation in mice can be due to competition between CD244 and CD2 for CD48. We have also found that the adaptor protein EAT-2 binds PLCγ1 providing a molecular basis for the important role CD244 plays in regulating cellular cytotoxicity (13, 36). We demonstrate that there is a potentially shared signaling mechanism through the FYN kinase that links CD2 and CD244 intracellularly even though in humans CD2 and CD244 no longer share a cell surface ligand.  相似文献   

7.
8.
9.
10.
11.
12.
13.
We previously reported that a CD3×CD19 bispecific antibody (bsAb) can induce efficient killing of tumour cells by preactivated T cells isolated from patients with B cell malignancy. For future intravenous application we investigated whether resting T cells from peripheral blood can be stimulated to proliferate and become cytotoxic with the CD3×CD19 bsAb alone. Indeed peripheral blood mononuclear cells, isolated from healthy donors or patients with B cell malignancy, started to proliferate within 1 day in response to CD3×CD19 bsAb. Within the same time spaancytotoxic activity against CD19-positive tumour cells was already detectable. Maintenance of cytotoxic activity was seen during 3 days of culture but optimal lysis of the target cells then required fresh CD3×CD19 bsAb in the cytotoxicity assay. Essentially the same results for proliferation and cytotoxicity were found when separated CD4-positive and CD8-positive T cells were activated by the bsAb in the presence of autologous monocytes. These results may be relevant for the in vivo application of the bsAb when used as immunotherapy in patients with B cell malignancy.This work was supported by grant IKMN 90-10 from the Dutch Cancer Society. M.C. was supported by a grant from the UK Medical Research Couneil  相似文献   

14.
Upon their recognition of antigens presented by the MHC, T cell proliferation is vital for clonal expansion and the acquisition of effector functions, which are essential for mounting adaptive immune responses. The CD98 heavy chain (CD98hc, Slc3a2) plays a crucial role in the proliferation of both CD4+ and CD8+ T cells, although it is unclear if CD98hc directly regulates the T cell effector functions that are not linked with T cell proliferation in vivo. Here, we demonstrate that CD98hc is required for both CD4+ T cell proliferation and Th1 functional differentiation. T cell-specific deletion of CD98hc did not affect T cell development in the thymus. CD98hc-deficient CD4+ T cells proliferated in vivo more slowly as compared with control T cells. C57BL/6 mice lacking CD98hc in their CD4+ T cells could not control Leishmania major infections due to lowered IFN-γ production, even with massive CD4+ T cell proliferation. CD98hc-deficient CD4+ T cells exhibited lower IFN-γ production compared with wild-type T cells, even when comparing IFN-γ expression in cells that underwent the same number of cell divisions. Therefore, these data indicate that CD98hc is required for CD4+ T cell expansion and functional Th1 differentiation in vivo, and suggest that CD98hc might be a good target for treating Th1-mediated immune disorders.  相似文献   

15.
Acute coronary syndrome (ACS) is a group of clinical symptoms that results from complete or partial occlusive thrombus, which is caused by coronary an atherosclerotic plaque rupture or erosion. According to a recent study, CD4+ CD28 T cells are found in atherosclerotic plaques and the peripheral circulation blood in patients with ACS, these cells play an important role in plaque ruptures. CD4+ CD28 T cells are an unusual subset of helper cells, which expand and have harmful effects in ACS. In this review, we discuss the current issues on the generation of CD4+ CD28 T cells and focus on their phenotypic and functional characteristics relevant to the development of cardiovascular events. Targeting the CD4+ CD28 T cells subset in ACS could provide novel therapeutic means to prevent acute life-threatening coronary events.  相似文献   

16.
《Cytotherapy》2022,24(2):161-171
Background aimsThe authors describe here a novel therapeutic strategy combining a bispecific antibody (bsAb) with cytokine-induced killer (CIK) cells.MethodsThe authors have designed, produced and purified a novel tetravalent IgG1-like CD20 × CD5 bsAb called BL-01. The bsAb is composed of a fused heavy chain and two free light chains that pair correctly to the heavy chain sequences thanks to complementary mutations in the monoclonal antibody 2 CH1/CL sequences.ResultsThe authors show that BL-01 can bind specifically to CD20 and CD5 with an affinity of 4–6 nM, demonstrating correct pairing of two light chains to the fused heavy chain. The CD20 × CD5 BL-01 bsAb has a functional human IgG1 Fc and can induce up to 65% complement-dependent cytotoxicity of a CD20+ lymphoma cell line in the presence of human complement, similar to anti-CD20 rituximab. The bsAb also induces significant natural killer cell activation and antibody-dependent cytotoxicity of up to 25% as well as up to 65% phagocytosis by human macrophages in the presence of CD20+ tumor cells. The BL-01 bsAb binds to CD20 and CD5 simultaneously and can redirect CIK cells in vitro to kill CD20+ targets, increasing the cytotoxicity of CIK cells by about 3-fold. The authors finally show that the CD20 × CD5 BL-01 bsAb synergizes with CIK cells in vivo in controlling tumor growth and prolonging survival of nonobese diabetic/severe combined immunodeficiency mice inoculated with a patient-derived, aggressive diffuse large B-cell lymphoma xenograft.ConclusionsThe authors suggest that the efficacy of bsAb in vivo is due to the combined activation of innate immunity by Fc and redirection of CIK cells to kill the tumor target.  相似文献   

17.
Bone marrow-derived cells have been postulated as a source of multipotent mesenchymal stem cells (MSC). However, the whole fraction of MSC remains heterogeneous and the expansion of primitive subset of these cells is still not well established. Here, we optimized the protocol for propagating the low-adherent subfraction of MSC which results in long-term expansion of population characterized by CD45CD14+CD34+ phenotype along with expression of common MSC markers. We established that the expanded MSC are capable of differentiating into endothelial cells highly expressing angiogenic markers and exhibiting functional properties of endothelium. Moreover, we found these cells to be multipotent and capable of giving rise into cells from neuronal lineages. Interestingly, the expanded MSC form characteristic cellular spheres in vitro indicating primitive features of these cells. In sum, we isolated the novel multipotent subpopulation of CD45CD14+ CD34+ bone marrow-derived cells that could be maintained in long-term culture without losing this potential.  相似文献   

18.
19.
CD44 is a cell surface protein and it is widely used as a cancer stem cell marker in various cancer types including gastric cancer. We conducted proteomic analysis in CD44(+) and CD44(?) gastric cancer cells to understand characteristics of CD44(+) and CD44(?) cells. In the present study, we sorted cells from the gastric cancer cell line MKN45 according to CD44 expression to separate out CD44(+) and CD44(?) cells. And we conducted RT-PCR to identify mRNA expression of cancer stem cell markers in CD44(+) and CD44(?) cells. Cancer stem cell markers showed upregulated expression in CD44(+) cells. Next, we performed two-dimensional electrophoresis analysis to determine the differential expression pattern of proteins in each group; control, CD44(+), and CD44(?) MKN45 cells. We found a total of 113 spots that varied in expression between CD44(+) and CD44(?) cells, and subjected 20 of those protein spots to MALDI-MS. We selected the three proteins (HSPA8; heat shock cognate 71 kDa protein isoform 1, ezrin, α-enolase) upregulated in CD44(+) cells than CD44(?) cells and one protein (prohibitin) showed increased expression in CD44(?) cells. We validated the protein expression levels of four selected proteins by Western blot. We suggest that our study could be a helpful background to study CD44(+) cancer stem-like cells and differences between CD44(+) and CD44(?) cells in gastric cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号