首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Eukaryotic systems self-organise by using molecular railways to shuttle specific sets of molecular components to specific locations. In this way, cells are enabled to become larger, more complex and more varied, subtle and effective in their activities. Because of the fundamental importance of molecular railways in eukaryotic systems, understanding how these railways work is an important research goal. Mechanochemical cell biology is a newly circumscribed subject area that concerns itself with the molecular and cell biological mechanisms of motorised directional transport in living systems.  相似文献   

3.
4.
Upon starvation, Grh1, a peripheral membrane protein located at endoplasmic reticulum (ER) exit sites and early Golgi in Saccharomyces cerevisiae under growth conditions, relocates to a compartment called compartment for unconventional protein secretion (CUPS). Here we report that CUPS lack Golgi enzymes, but contain the coat protein complex II (COPII) vesicle tethering protein Uso1 and the Golgi t-SNARE Sed5. Interestingly, CUPS biogenesis is independent of COPII- and COPI-mediated membrane transport. Pik1- and Sec7-mediated membrane export from the late Golgi is required for complete assembly of CUPS, and Vps34 is needed for their maintenance. CUPS formation is triggered by glucose, but not nitrogen starvation. Moreover, upon return to growth conditions, CUPS are absorbed into the ER, and not the vacuole. Altogether our findings indicate that CUPS are not specialized autophagosomes as suggested previously. We suggest that starvation triggers relocation of secretory and endosomal membranes, but not their enzymes, to generate CUPS to sort and secrete proteins that do not enter, or are not processed by enzymes of the ER–Golgi pathway of secretion.  相似文献   

5.
6.
7.
Mesangial cells originate from the metanephric mesenchyme and maintain structural integrity of the glomerular microvascular bed and mesangial matrix homeostasis. In response to metabolic, immunologic or hemodynamic injury, these cells undergo apoptosis or acquire an activated phenotype and undergo hypertrophy, proliferation with excessive production of matrix proteins, growth factors, chemokines and cytokines. These soluble factors exert autocrine and paracrine effects on the cells or on other glomerular cells, respectively. MCs are primary targets of immune-mediated glomerular diseases such as IGA nephropathy or metabolic diseases such as diabetes. MCs may also respond to injury that primarily involves podocytes and endothelial cells or to structural and genetic abnormalities of the glomerular basement membrane. Signal transduction and oxidant stress pathways are activated in MCs and likely represent integrated input from multiple mediators. Such responses are convenient targets for therapeutic intervention. Studies in cultured MCs should be supplemented with in vivo studies as well as examination of freshly isolated cells from normal and diseases glomeruli. In addition to ex vivo morphologic studies in kidney cortex, cells should be studied in their natural environment, isolated glomeruli or even tissue slices. Identification of a specific marker of MCs should help genetic manipulation as well as selective therapeutic targeting of these cells. Identification of biological responses of MCs that are not mediated by the renin-angiotensin system should help development of novel and effective therapeutic strategies to treat diseases characterized by MC pathology.  相似文献   

8.
9.
10.
11.
Based on its in vitro unwinding activity on G-quadruplex (G4) DNA, the Bloom syndrome–associated helicase BLM is proposed to participate in telomere replication by aiding fork progression through G-rich telomeric DNA. Single molecule analysis of replicated DNA (SMARD) was used to determine the contribution of BLM helicase to telomere replication. In BLM-deficient cells, replication forks initiating from origins within the telomere, which copy the G-rich strand by leading strand synthesis, moved slower through the telomere compared with the adjacent subtelomere. Fork progression through the telomere was further slowed in the presence of a G4 stabilizer. Using a G4-specific antibody, we found that deficiency of BLM, or another G4-unwinding helicase, the Werner syndrome-associated helicase WRN, resulted in increased G4 structures in cells. Importantly, deficiency of either helicase led to greater increases in G4 DNA detected in the telomere compared with G4 seen genome-wide. Collectively, our findings are consistent with BLM helicase facilitating telomere replication by resolving G4 structures formed during copying of the G-rich strand by leading strand synthesis.  相似文献   

12.
13.
14.
15.
16.
17.
18.
The cell biology of smell   总被引:1,自引:0,他引:1  
The olfactory system detects and discriminates myriad chemical structures across a wide range of concentrations. To meet this task, the system utilizes a large family of G protein-coupled receptors-the odorant receptors-which are the chemical sensors underlying the perception of smell. Interestingly, the odorant receptors are also involved in a number of developmental decisions, including the regulation of their own expression and the patterning of the olfactory sensory neurons' synaptic connections in the brain. This review will focus on the diverse roles of the odorant receptor in the function and development of the olfactory system.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号