首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemokine-binding proteins represent a novel class of antichemokine agents encoded by poxviruses and herpesviruses. One such protein is encoded by the M3 gene present in the murine gammaherpesvirus 68 (MHV-68) genome. The M3 gene encodes a secreted 44-kDa protein that binds with high affinity to certain murine and human chemokines and has been shown to block chemokine signaling in vitro. However, there has been no direct evidence that M3 blocks chemokine activity in vivo, nor has the nature of M3-chemokine interaction been defined. To better understand the ability of M3 to block chemokine activity in vivo, we examined its interaction with a specific subset of chemokines expressed in lymphoid tissues, areas where gammaherpesviruses characteristically establish latency. Here we show that M3 blocks in vitro chemotaxis induced by CCL19 and CCL21, chemokines expressed constitutively in secondary lymphoid tissues. Moreover, we provide evidence that chemokine M3 binding exhibits positive cooperativity. In vivo, the expression of M3 in the pancreas of transgenic mice inhibits recruitment of lymphocytes induced by transgenic expression of CCL21 in this organ. The ability of M3 to block the biological activity of chemokines may represent an important strategy used by MHV-68 to evade immune detection and favor viral replication in the infected host.  相似文献   

2.
Chemokine ligand/receptor interactions affect melanoma cell growth, stimulate or inhibit angiogenesis, recruit leukocytes, promote metastasis, and alter the gene expression profile of the melanoma associated fibroblasts. Chemokine/chemokine receptor interactions can protect against tumor development/growth or can stimulate melanoma tumor progression, tumor growth and metastasis. Metastatic melanoma cells express chemokine receptors that play a major role in the specifying the organ site for metastasis, based upon receptor detection of the chemokine gradient elaborated by a specific organ/tissue. A therapeutic approach that utilizes the protective benefit of chemokines involves delivery of angiostatic chemokines or chemokines that stimulate the infiltration of cytotoxic T cells and natural killer T cells into the tumor microenvironment. An alternative approach that tackles the tumorigenic property of chemokines uses chemokine antibodies or chemokine receptor antagonists to target the growth and metastatic properties of these interactions. Based upon our current understanding of the role of chemokine‐mediated inflammation in cancer, it is important that we learn to appropriately regulate the chemokine contribution to the tumorigenic ‘cytokine/chemokine storm’, and to metastasis.  相似文献   

3.
Chemokines comprise a class of peptides with chemotactic activity towards leukocytes. The potency of different chemokines for the same receptor often varies as a result of differences in primary structure. In addition, post-translational modifications have been shown to affect the effectiveness of chemokines. Although in several studies, natural CXCR3-targeting chemokines have been isolated, detailed information about the proteins and their possible modifications is lacking. Using a combination of liquid chromatography and mass spectrometry we studied the protein profile of CXCR3-targeting chemokines expressed by interferon-gamma-stimulated human keratinocytes. The biological implications of one of the identified modifications was studied in more detail using calcium mobilization and chemotaxis assays. We found that the primary structure of human CXCL10 is different from the generally accepted sequence. In addition we identified a C-terminally truncated CXCL10, lacking the last four amino acids. Native CXCL11 was primarily found in its intact mature form but we also found a mass corresponding to an N-terminally truncated human CXCL11, lacking the first two amino acids FP, indicating that this chemokine is a substrate for dipeptidylpeptidase IV. Interestingly, this same truncation was found when we expressed human CXCL11 in Drosophila S2 cells. The biological activity of this truncated form of CXCL11 was greatly reduced, both in calcium mobilization (using CXCR3 expressing CHO cells) as well as its chemotactic activity for CXCR3-expressing T-cells. It is concluded that detailed information on chemokines at the protein level is important to characterize the exact profile of these chemotactic peptides as modifications can severely alter their biological activity.  相似文献   

4.
The CXC and CC chemokine gene clusters provide an abundant number of chemotactic factors selectively binding to shared G protein-coupled receptors (GPCR). Hence, chemokines function in a complex network to mediate migration of the various leukocyte subsets, expressing specific GPCRs during the immune response. Further fine-tuning of the chemokine system is reached through specific posttranslational modifications of the mature proteins. Indeed, enzymatic processing of chemokines during an early phase of inflammation leads to activation of precursor molecules or cleavage into even more active or receptor specific chemokine isoforms. At a further stage, proteolytic processing leads to loss of GPCR signaling, thereby providing natural chemokine receptor antagonists. Finally, further NH2-terminal cleavage results in complete inactivation to dampen the inflammatory response. During inflammatory responses, the two chemokines which exist in a membrane-bound form may be released by proteases from the cellular surface. In addition to proteolytic processing, citrullination and glycosylation of chemokines is also important for their biological activity. In particular, citrullination of arginine residues seems to reduce the inflammatory activity of chemokines in vivo. This goes along with other positive and negative regulatory mechanisms for leukocyte migration, such as chemokine synergy and scavenging by decoy receptors.  相似文献   

5.
Mimicry of host chemokines and chemokine receptors to modulate chemokine activity is a strategy encoded by beta- and gammaherpesviruses, but very limited information is available on the anti-chemokine strategies encoded by alphaherpesviruses. The secretion of chemokine binding proteins (vCKBPs) has hitherto been considered a unique strategy encoded by poxviruses and gammaherpesviruses. We describe a family of novel vCKBPs in equine herpesvirus 1, bovine herpesvirus 1 and 5, and related alphaherpesviruses with no sequence similarity to chemokine receptors or other vCKBPs. We show that glycoprotein G (gG) is secreted from infected cells, binds a broad range of chemokines with high affinity and blocks chemokine activity by preventing their interaction with specific receptors. Moreover, gG also blocks chemokine binding to glycosaminoglycans, an interaction required for the correct presentation and function of chemokines in vivo. In contrast to other vCKBPs, gG may also be membrane anchored and, consistently, we show chemokine binding activity at the surface of cells expressing full-length protein. These alphaherpesvirus vCKBPs represent a novel family of proteins that bind chemokines both at the membrane and in solution.  相似文献   

6.
CXCL14 is a member of the CXC chemokine family. CXCL14 possesses chemoattractive activity for activated macrophages, immature dendritic cells and natural killer cells. CXCL14-deficient mice do not exhibit clear immune system abnormalities, suggesting that the function of CXCL14 can be compensated for by other chemokines. However, CXCL14 does appear to have unique biological roles. It suppresses the in vivo growth of lung and head-and-neck carcinoma cells, whereas the invasiveness of breast and prostate cancer cells appears to be promoted by CXCL14. Moreover, recent evidence revealed that CXCL14 participates in glucose metabolism, feeding behaviour-associated neuronal circuits, and anti-microbial defense. Based on the expression patterns of CXCL14 and CXCL12 during embryonic development and in the perinatal brain in mice, the functions of these two chemokines may be opposite or interactive. Although CXCL14 receptors have not yet been identified, the intracellular activity of CXCL14 in breast cancer cells suggests that the CXCL14 receptor(s) and signal transduction pathway(s) may be different from those of conventional CXC-type chemokines.  相似文献   

7.
Chemokines and their receptors play important roles in normal physiological functions and the pathogeneses of a wide range of human diseases, including the entry of human immunodeficiency virus type 1 (HIV-1). However, the use of natural chemokines to probe receptor biology or to develop therapeutic drugs is limited by their lack of selectivity and the poor understanding of mechanisms in ligand-receptor recognition. We addressed these issues by combining chemical and structural biology in research into molecular recognition and inhibitor design. Specifically, the concepts of chemical biology were used to develop synthetically and modularly modified (SMM) chemokines that are unnatural and yet have properties improved over those of natural chemokines in terms of receptor selectivity, affinity, and the ability to explore receptor functions. This was followed by using structural biology to determine the structural basis for synthetically perturbed ligand-receptor selectivity. As a proof-of-principle for this combined chemical and structural-biology approach, we report a novel D-amino acid-containing SMM-chemokine designed based on the natural chemokine called viral macrophage inflammatory protein II (vMIP-II). The incorporation of unnatural D-amino acids enhanced the affinity of this molecule for CXCR4 but significantly diminished that for CCR5 or CCR2, thus yielding much more selective recognition of CXCR4 than wild-type vMIP-II. This D-amino acid-containing chemokine also showed more potent and specific inhibitory activity against HIV-1 entry via CXCR4 than natural chemokines. Furthermore, the high-resolution crystal structure of this D-amino acid-containing chemokine and a molecular-modeling study of its complex with CXCR4 provided the structure-based mechanism for the selective interaction between the ligand and chemokine receptors and the potent anti-HIV activity of D-amino acid-containing chemokines.  相似文献   

8.
Chemokines are a family of chemotactic peptides affecting leukocyte migration during the inflammatory response. Post-translational modification of chemokines has been shown to affect their biological potency. Here, the isolation and identification of natural isoforms of the neutrophil chemoattractants GRO alpha and GRO gamma and the epithelial-cell-derived neutrophil attractant-78 (ENA-78), is reported. Cultured tumor cells produced predominantly intact chemokine forms, whereas peripheral blood monocytes secreted mainly NH2-terminally truncated forms. The order of neutrophil chemotactic potency of these CXC chemokines was GRO alpha > GRO gamma > ENA-78 both for intact and truncated forms. However, truncated GRO alpha (4,5,6-73), GRO gamma (5-73) and ENA-78(8,9-78) were 30-fold, fivefold and threefold more active than the corresponding intact chemokine. As a consequence, truncated GRO alpha (4,5,6-73) was 300-fold more potent than intact ENA-78 indicating that both the type of chemokine and its mode of processing determine the chemotactic potency. Similar observations were made when intact and truncated GRO alpha, GRO gamma and ENA-78 were compared for their capacity to induce an increase in the intracellular calcium concentration in neutrophilic granulocytes, and to desensitize the calcium response towards the CXC chemokine granulocyte chemotactic protein-2 (GCP-2). It must be concluded that physiological proteolytic cleavage of CXC chemokines in general enhances the inflammatory response, whereas for CC chemokines NH2-terminal processing mostly results in reduced chemotactic potency.  相似文献   

9.

Introduction

The aims of these studies were to identify the cytokine and chemokine expression profile of nucleus pulposus (NP) cells and to determine the relationships between NP cell cytokine and chemokine production and the characteristic tissue changes seen during intervertebral disc (IVD) degeneration.

Methods

Real-time q-PCR cDNA Low Density Array (LDA) was used to investigate the expression of 91 cytokine and chemokine associated genes in NP cells from degenerate human IVDs. Further real-time q-PCR was used to investigate 30 selected cytokine and chemokine associated genes in NP cells from non-degenerate and degenerate IVDs and those from IVDs with immune cell infiltrates (‘infiltrated’). Immunohistochemistry (IHC) was performed for four selected cytokines and chemokines to confirm and localize protein expression in human NP tissue samples.

Results

LDA identified the expression of numerous cytokine and chemokine associated genes including 15 novel cytokines and chemokines. Further q-PCR gene expression studies identified differential expression patterns in NP cells derived from non-degenerate, degenerate and infiltrated IVDs. IHC confirmed NP cells as a source of IL-16, CCL2, CCL7 and CXCL8 and that protein expression of CCL2, CCL7 and CXCL8 increases concordant with histological degenerative tissue changes.

Conclusions

Our data indicates that NP cells are a source of cytokines and chemokines within the IVD and that these expression patterns are altered in IVD pathology. These findings may be important for the correct assessment of the ‘degenerate niche’ prior to autologous or allogeneic cell transplantation for biological therapy of the degenerate IVD.  相似文献   

10.
Recent observations suggest that besides their role in the immune system, chemokines have important functions in the brain. There is a great line of evidence to suggest that chemokines are a unique class of neurotransmitters/neuromodulators, which regulate many biological aspects as diverse as neurodevelopment, neuroinflammation and synaptic transmission. In physiopathological conditions, many chemokines are synthesized in activated astrocytes and microglial cells, suggesting their involvement in brain defense mechanisms. However, when evoking chemokine functions in the nervous system, it is important to make a distinction between resting conditions and various pathological states including inflammatory diseases, autoimmune or neurodegenerative disorders in which chemokine functions have been extensively studied. We illustrate here the emergent concept of the neuromodulatory/neurotransmitter activities of neurochemokines and their potential role as a regulatory alarm system and as a group of messenger molecules for the crosstalk between neurons and cells from their surrounding microenvironment. In this deliberately challenging review, we provide novel hypotheses on the role of these subtle messenger molecules in brain functions leading to the evidence that previous dogmas concerning chemokines should be reconsidered.  相似文献   

11.
《MABS-AUSTIN》2013,5(3):288-296
Chemokines are important mediators of the immune response that are responsible for the trafficking of immune cells between lymphoid organs and migration towards sites of inflammation. Using phage display selection and a functional screening approach, we have isolated a panel of single-chain fragment variable (scFv) capable of neutralizing the activity of the human chemokine CXCL10 (hCXCL10). One of the isolated scFv was weakly cross-reactive against another human chemokine CXCL9, but was unable to block its biological activity. We diversified the complementarity determining region 3 (CDR3) of the light chain variable domain (VL) of this scFv and combined phage display with high throughput antibody array screening to identify variants capable of neutralizing both chemokines. Using this approach it is therefore possible to engineer pan-specific antibodies that could prove very useful to antagonize redundant signaling pathways such as the chemokine signaling network.  相似文献   

12.
13.
Certain chemokines act as natural antagonists of human immunodeficiency virus (HIV) by blocking key viral coreceptors, such as CCR5 and CXCR4, on the surface of susceptible cells. Elucidating the structural determinants of the receptor-binding and HIV-inhibitory functions of these chemokines is essential for the rational design of derivative molecules of therapeutic value. Here, we identify the structural determinants of CCR5 recognition and antiviral activity of the CC chemokine RANTES, showing that critical residues form a solvent-exposed hydrophobic patch on the surface of the molecule. Moreover, we demonstrate that the biological function is critically dependent on dimerization, resulting in the exposure of a large ( approximately 180 A2), continuous hydrophobic surface. Relevant to the development of novel therapeutic approaches, we designed a retroinverted RANTES peptide mimetic that maintained both HIV- and chemotaxis-antagonistic functions.  相似文献   

14.
Chemokine dimerization has been the subject of much interest in recent years as evidence has accumulated that different quaternary states of chemokines play different biological roles; the monomer is believed to be the receptor-binding unit, whereas the dimer has been implicated in binding cell surface glycosaminoglycans. However, although several studies have provided evidence for this paradigm by making monomeric chemokine variants or dimer-impaired chemokines, few have provided direct evidence of the receptor function of a chemokine dimer. We have produced a covalent dimer of the CC chemokine macrophage inflammatory protein-1beta (MIP-1beta) by placing a disulfide bond at the center of its dimer interface through a single amino acid substitution (MIP-1beta-A10C). This variant was shown to be a nondissociating dimer by SDS-PAGE and analytical ultracentrifugation. NMR reveals a structure largely the same as the wild type protein. In studies of glycosaminoglycan binding, MIP-1beta-A10C binds to a heparin-Sepharose column as tightly as the wild type protein and more tightly than monomeric variants. However, MIP-1beta-A10C neither binds nor activates the MIP-1beta receptor CCR5. It was found that the ability to activate CCR5 was recovered upon reduction of the intermolecular disulfide cross-link by incubation with 1 mm dithiothreitol. This work provides the first definitive evidence that the CC chemokine MIP-1beta dimer is not able to bind or activate its receptor and implicates the CC chemokine monomer as the sole receptor-interacting unit.  相似文献   

15.
The chemokine system has a critical role in mammalian immunity, but the evolutionary history of chemokines and chemokine receptors are ill-defined. We used comparative whole genome analysis of fruit fly, sea urchin, sea squirt, pufferfish, zebrafish, frog, and chicken to identify chemokines and chemokine receptors in each species. We report 127 chemokine and 70 chemokine receptor genes in the 7 species, with zebrafish having the most chemokines, 63, and chemokine receptors, 24. Fruit fly, sea urchin, and sea squirt have no identifiable chemokines or chemokine receptors. This study represents the most comprehensive analysis of the chemokine system to date and the only complete characterization of chemokine systems outside of mouse and human. We establish a clear evolutionary model of the chemokine system and trace the origin of the chemokine system to approximately 650 million years ago, identifying critical steps in their evolution and demonstrating a more extensive chemokine system in fish than previously thought.  相似文献   

16.
17.
Chemokine receptors   总被引:25,自引:0,他引:25  
Although chemokines were originally defined as host defense proteins it is now clear that their repertoire of functions extend well beyond this role. For example chemokines such as MGSA have growth regulatory properties while members of the CXC chemokine family can be mediators or inhibitors of angiogenesis and may be important targets for oncology. Recent work shows that the chemokine receptor CXCR4 and its cognate ligand SDF play important roles in the development of the immune, circulatory and central nervous systems. In addition, chemokine receptors play an important role in the pathogenesis of the AIDS virus, HIV-1. Taken together these findings expand the biological importance of chemokines from that of simple immune modulators to a much broader biological role than was at first appreciated and these and other properties of the chemokine receptor family are discussed in detail in this review.  相似文献   

18.
The chemokines are a group of chemotactic molecules that appear to regulate the directed movement of white blood cells in vitro and in vivo and may therefore play important roles in inflammation and immunity. The genes encoding the chemokines are clustered in close physical proximity to each other. A large cluster of human CC chemokine genes resides on chromosome 17. We have used this information in a positional cloning approach to identify novel chemokine genes within this cluster. We constructed a YAC contig encompassing the MIP-1alpha (HGMW-approved symbol SCYA3) gene region and used exon trapping and sequence analysis to isolate novel chemokine genes. Using this approach, a gene encoding a chemokine named MIP-4, based on its homology with MIP-1alpha (49.5% identity at the nucleotide level and 59.6% at the predicted amino acid level), was found. The MIP-4 gene (HGMW-approved symbol SCYA18) consists of three exons spread over 7.1 kb and is separated from the MIP-1alpha gene by 16 kb. The MIP-4 gene encodes a 750-bp mRNA that is expressed in lung and macrophages but not in brain or muscle. The mRNA encodes an 89-amino-acid protein and includes a predicted signal peptide of 21 amino acids. Recombinant or synthetic MIP-4 induced calcium mobilization in naive and activated T lymphocyte subpopulations in vitro. Injection of synthetic MIP-4 into the peritoneal cavity of mice led to the accumulation of both CD4(+) and CD8(+) T lymphocytes, but not monocytes or granulocytes. These observations provide new information concerning the arrangement of the CC chemokine gene cluster on human chromosome 17 and indicate that the MIP-4 gene product is chemotactic in vivo for both CD4(+) and CD8(+) T lymphocytes and may therefore be implicated in both humoral and cell-mediated immunity.  相似文献   

19.
趋化因子及其受体基因家族的系统进化分析   总被引:2,自引:0,他引:2  
通过分析现有的趋化因子和趋化因子受体的氨基酸序列,用距离法和最简约法构建了聚类图,探讨了趋化因子和趋化因子受体基因家族的系统演化特征。可见基因家族成员的分化早于脊椎动物的分化。不同物种的同一种基因的聚类关系能较好地反映物种经因子受体的进化速度不同,其中CXCR4的进化速率最低。趋化因子和趋化因子受体可能都起源于少数几个原始的基因,病毒编码与寄主相似的趋化因子或受体是进化过程中分子模拟的结果。  相似文献   

20.
In the past few years, a large number of new chemokines (chemotactic cytokines) and chemokine receptors have been discovered. The growth in knowledge about these molecules has been achieved largely through advances in bioinformatics and the expansion of expression sequence tag (EST) databases. It is now clear that chemokines are crucial in controlling both the development and functioning of leukocytes and that their role is not restricted to cell attraction, as originally assumed. In particular, recent findings provide strong support for the idea that chemokines and their receptors are especially important in the control of viral infection and replication. Thus, specific chemokines are now known to enhance the cytotoxic activity of infected cells, thus inhibiting further virus replication. In addition, some chemokines orchestrate the recruitment of activated leukocytes to foci of infection to aid viral clearance. Viruses, in turn, have evolved various defences against chemokines. These range from the production of proteins that inhibit biological activity of the host chemokine to the hijacking of the chemokine system, whereby certain viruses utilize chemokine receptors for their entry. The latter viral defence can itself be blocked by chemokines. Altogether, these findings illustrate the central role of chemokines in many different phases of the immune response, particularly those aspects involving antiviral defence, a variety and versatility that was not fully appreciated even a few years ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号