首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J M Renoir  T Buchou  E E Baulieu 《Biochemistry》1986,25(21):6405-6413
Nontransformed 8S progesterone receptor (8S-PR) was purified by hormone-specific affinity chromatography from rabbit uterine low-salt cytosol containing 20 mM molybdate. In the eluate obtained with radioactive progestin, sodium dodecyl sulfate-polyacrylamide electrophoresis (SDS-PAGE) showed the presence of several bands, including three that corresponded to approximately 90-, approximately 120-, and approximately 85-kDa proteins. None of these three proteins was found in the eluate of the affinity column when the molybdate-containing cytosol was chromatographed in the presence of nonradioactive progesterone ("mock purification"). Subsequent purification of the affinity eluate by DEAE-Sephacel chromatography gave a single radioactive receptor peak at 0.15 M KCl (approximately 20% yield, 19% purity on the basis of one binding site per approximately 100 kDa) with a sedimentation coefficient of 8.5 S. Silver staining after SDS-PAGE revealed that this purified 8S-PR fraction contained mainly the 120-, 90-, and 85-kDa proteins. [3H]R5020-labeled 8S-PR purified by DEAE-Sephacel column chromatography was UV irradiated, and after SDS-PAGE the 120- and 85-kDa proteins were revealed, but the 90-kDa protein was not.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A monoclonal antibody (BF4) has been used to characterize and purify the heat-shock protein of Mr approximately 90,000 (hsp 90) present in the chick oviduct. In low salt cytosol, the sedimentation coefficient of hsp 90 is approximately 6.8 S, the Stokes radius approximately 7.1 nm, and the calculated Mr approximately 204,000, thus suggesting a dimeric structure. In 0.4 M KCl cytosol, only slightly smaller values were determined (approximately 6.5 S, approximately 6.8 nm, and approximately 187,000). Following purification by ion exchange and immunoaffinity chromatography, hsp 90 migrated as a single silver-stained band at Mr approximately 90,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, while the sedimentation coefficient 6.2 S, the Stokes radius approximately 6.8 nm, and the Mr approximately 178,000 confirmed the dimeric structure. However, in both antigen or antibody excess conditions, only one molecule of monoclonal antibody could be bound to the hsp 90 dimer. Whether steric hindrance in a homodimer or the presence of two different 90-kDa proteins in a heterodimer explains this result cannot yet be decided. The dimer is not dissociated by high salt (1 M KCl) or the chaotropic agent (0.5 M NaSCN), but is disrupted by 4 M urea, suggesting a stabilization of the structure by hydrogen bonds. The molybdate-stabilized progesterone receptor hetero-oligomer form of approximately 8 S sedimentation coefficient was purified, and its hsp 90 component was then released by salt treatment. It was found to sediment at approximately 5.8 S and have a Stokes radius approximately 7.1 nm, giving Mr approximately 174,000. This observation is consistent with a previous report suggesting from specific activity determination, scanning of polyacrylamide gels, and cross-linking experiments that each purified nontransformed progesterone receptor molecule includes one progesterone binding unit per two 90-kDa protein molecules (Renoir, J. M., Buchou, T., Mester, J., Radanyi, C., and Baulieu, E. E. (1984) Biochemistry 23, 6016-6023). This work brings direct evidence that both free hsp 90 and the non-hormone binding hsp 90 component released from the nontransformed steroid receptor in the cytosol are in a dimeric form.  相似文献   

3.
The binding of [3H]aldosterone in the chick intestine cytosol was analyzed in terms of affinity and specificity. In this tissue, aldosterone binds to the mineralocorticosteroid receptor, with a high affinity (Kd approximately 0.3 nM) and low capacity (approximately 50 fmol/mg protein), and to the glucocorticosteroid receptor. The selective labeling of the mineralocorticosteroid receptor was achieved by incubating the cytosol with [3H]aldosterone in the presence of RU 486. This synthetic steroid completely inhibited the binding of [3H]aldosterone to the glucocorticosteroid receptor and did not bind to the mineralocorticosteroid receptor. The oligomeric structure of the mineralocorticosteroid receptor was studied by using BF4, a monoclonal antibody which reacts with the 90-kDa heat shock protein (hsp 90), a nonhormone-binding component of nontransformed steroid receptors. The mineralocorticosteroid receptor sedimented at 8.5 +/- 0.4 S (n = 8) in a 15-40% glycerol gradient. This peak was shifted to 11.2 +/- 0.6 S (n = 5) after incubation with BF4, indicating that, in the cytosol, hsp 90 was associated with the mineralocorticosteroid receptor. Dissociation of the complex was observed on gradients containing 0.4 M KCl, as judged by the absence of displacement by BF4 of the 4.3 +/- 0.4 S (n = 10) peak. The effect of molybdate and tungstate ions, and of dimethyl pimelimidate, an irreversible cross-linking agent, on the stability of the hsp 90-receptor complex was investigated. Complexes recovered in the presence of 20 mM molybdate ions dissociated on gradients containing 0.4 M KCl (5.2 +/- 0.6 S (n = 4), whereas complexes prepared in the presence of 20 mM tungstate ions sedimented at 8.5 +/- 0.4 S (n = 7). Similarly, complexes prepared in the presence of molybdate ions dissociated during high pressure liquid chromatography (HPLC) gel filtration analysis performed in 0.4 M KCl (RS (Stokes radius) = 3.9 +/- 0.5 nm (n = 3) versus 7.3 +/- 0.2 nm (n = 3) in the presence of 20 mM molybdate ions), whereas complexes prepared in the presence of tungstate ions did not dissociate (RS = 6.9 +/- 0.2 nm (n = 3]. As observed for the tungstate-stabilized receptor, the cross-linked receptor dissociated neither on gradient containing 0.4 M KCl (9.5 +/- 0.1 S (n = 3] nor during HPLC performed in 0.4 M KCl (RS = 6.5 +/- 0.3 (n = 4]. Furthermore, the cross-linked receptor was more resistant to the inactivating effect of urea on aldosterone binding than the noncross-linked receptor prepared in the presence of either molybdate or tungstate ions.  相似文献   

4.
Non-transformed steroid receptors have an approximately 8S sedimentation coefficient that corresponds to an oligomeric structure of 250-300 kd which includes a non-hormone binding 90-kd protein. A monoclonal antibody BF4 raised against the purified, molybdate-stabilized, 8S progesterone receptor (8S-PR) from chick oviduct, recognizes 8S forms of all steroid hormone receptors. BF4 was found specific for a 90-kd protein present in great abundance in all chicken tissues, including that present in 8S-forms of steroid receptors. Here, using immunological and biochemical techniques, we demonstrate that this ubiquitous BF4-positive 90-kd protein is in fact the chicken 90 kd heat-shock protein (hsp 90): it increased in heat-shocked chick embryo fibroblasts, and displayed identical migration in two-dimensional gel electrophoresis and the same V8 peptide map as the already described hsp 90. We discuss the possibility that the interaction between hsp 90 and steroid hormone-binding subunits may play a role in keeping the receptor in an inactive form.  相似文献   

5.
A 110kDa component of the chick oviduct progesterone receptor (PR) has been purified to homogeneity according to electrophoretic criteria and specific activity (assuming one progestagen-binding site/110kDa). The procedure involved affinity chromatography of 0.3 M-KCl-prepared cytosol, followed by DEAE-Sephacel chromatography (elution at 0.2 M-KCl). The final yield was about 12% in terms of binding activity. Properties of the 110kDa component indicate that it is identical with the 'B' subunit described previously [Stokes radius approximately 6.1 nm; sedimentation coefficient, (S20, w) approximately 4S; frictional ratio approximately 1.77]. It reacted with the IgG-G3 polyclonal antibody, but not with BF4 monoclonal antibody raised against the 8S molybdate-stabilized chick oviduct PR and reacting with its 90kDa component. Another progesterone-binding component, corresponding to the 'A' subunit, also previously described, was eluted from the DEAE-Sephacel column at approximately 0.08 M-KCl, and contained a peptide of molecular mass approx. 75-80kDa, which had S20, w approximately 4S in a sucrose gradient. This component was also recognized by IgG-G3, but not by BF4; it was very unstable in terms of hormone-binding activity.  相似文献   

6.
A monoclonal IgG 2a antibody directed against the activated rat liver glucocorticoid receptor (GR) was used to prepare an immunoaffinity matrix of high capacity. The molybdate-stabilized GR from rat liver cytosol was immunoadsorbed on this gel. A non-hormone-binding protein of Mr approximately 90,000, as determined after denaturing gel electrophoresis, was eluted from this matrix following removal of molybdate and exposure to heat (25 degrees C) and salt (0.15 M NaCl). Subsequently, the Mr approximately 90,000 protein was purified to homogeneity using high-performance ion-exchange chromatography, covalently radiolabelled, and analyzed by high-performance size-exclusion chromatography and sucrose gradient ultracentrifugation. Hydrodynamic characterization indicates that, under our experimental conditions, the molybdate-stabilized rat liver GR (Rs approximately 7.4 nm, s20,w approximately 9.1 S, calculated mol. wt Mr approximately 285,000) includes one steroid-binding unit (Rs approximately 5.5 nm, S20,w approximately 4.3 S, calculated Mr approximately 100,000) and a dimer of Mr approximately 90,000 non-hormone-binding protein (Rs approximately 6.9 nm, S20,w approximately 6.1 S, calculated native Mr approximately 180,000).  相似文献   

7.
The molecular properties of the receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin in the mouse hepatoma cell line Hepa 1c1c7 were investigated. The receptor was found to represent a highly asymmetrical molecule with a sedimentation coefficient, s20,w, of approximately 8 S, a Stokes radius of 7-8 nm, and a calculated Mr approximately equal to 260,000-300,000. In comparison, the Hepa 1c1c7 glucocorticoid receptor in analogy to the glucocorticoid receptor in general as well as the C57BL/6 mouse and rat hepatic dioxin receptors are molecules with an s20,w value of 4-5 S, a Stokes radius of approximately 6 nm, and a calculated Mr approximately equal to 100,000. In the presence of 20 mM sodium molybdate, a large Mr approximately equal to 270,000-310,000 form of the Hepa 1c1c7 glucocorticoid receptor is stabilized which is hydrodynamically indistinguishable from the Mr approximately equal to 260,000-300,000 Hepa 1c1c7 dioxin receptor. Sodium molybdate does not have any effect on the molecular properties of the Hepa 1c1c7 dioxin receptor. In conclusion, the large form of dioxin receptor present in Hepa 1c1c7 mouse hepatoma cells in the absence of sodium molybdate is strikingly similar to molybdate-stabilized steroid hormone receptors as well as the molybdate-stabilized form of the dioxin receptor previously demonstrated in rat hepatic cytosol. Therefore, the Hepa 1c1c7 dioxin receptor might offer an interesting model for studies on the structure and function of Mr approximately equal to 300,000 forms of soluble receptors.  相似文献   

8.
The use of high-performance ion-exchange chromatography (HPIEC) on a Mono Q column was investigated for the analysis of glucocorticoid receptor. In the presence of 10 mM sodium molybdate, both liganded and unliganded glucocorticoid receptor were eluted as a single and sharp peak (0.32 M NaCl). In the absence of molybdate and after exposure to heat and salt, another peak of specifically bound radioactivity was eluted with 0.08 M NaCl. When HPIEC was performed in the absence of molybdate, two molecular forms of the liganded receptor were detected which eluted with 0.08 M NaCl (Stokes' radius Rs = 5.1 nm, s20,w = 4.6 S, calculated mol. wt Mr approximately 100,000) and 0.32 M NaCl (Rs = 7.3 nm, S20,w = 9.0 S, calculated Mr approximately 280,000). Analysis of both forms with mini-columns of DNA-Ultrogel, DEAE-Trisacryl and hydroxylapatite (HA-Ultrogel) confirmed the identity of the two peaks with transformed and non-transformed glucocorticoid-receptor complexes. These results suggest that HPIEC may provide a useful tool for the rapid resolution and quantification of receptor molecular forms.  相似文献   

9.
The unactivated molybdate-stabilized glucocorticoid receptor (GcR) was purified from rat kidney cortex cytosol (RKcC) by using a modification of the procedure previously described by this laboratory for rat hepatic receptor. The purification includes affinity chromatography, gel filtration, and ion-exchange chromatography. The final preparation (approximately 1000-fold pure as determined from specific radioactivity) was used in subsequent physicochemical and functional analyses. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed a single heavily Coomassie-stained band at 90 kilodaltons. Density gradient ultracentrifugation indicated a sedimentation coefficient of 10.5 +/- 0.05 S (n = 2). Chromatography on an analytical gel filtration column produced a Stokes radius (Rs) of 6.4 +/- 0.07 nm (n = 5). The Rs was unchanged when the molybdate-stabilized GcR was analyzed in the presence of 400 mM KCl or when analyzed in the unpurified (cytosolic) state. In contrast, the hepatic GcR was observed to exist as a larger form in cytosol (7.7 +/- 0.2 nm). Following purification, or upon gel filtration analysis under hypertonic conditions, the Rs was similar to that of the unpurified RKcC GcR. Following removal of molybdate from RKcC GcR and thermal activation (25 degrees C/30 min), DNA-cellulose binding increased 1.5-2-fold over the unheated control. Addition of RKcC or hepatic cytosol (endogenous receptors thermally denatured at 90 degrees C/30 min or presaturated with 10(-7) M radioinert ligand) during thermal activation increased DNA-cellulose binding an additional 2-6-fold beyond the heated control.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We have investigated the stability of the [3H]dexamethasone 21-mesylate-labeled nonactivated glucocorticoid-receptor complex in rat thymus cytosol containing 20 mM sodium molybdate. Cytosol complexes were analyzed under nondenaturing conditions by gel filtration chromatography in the presence of molybdate and under denaturing conditions by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. When analyzed under nondenaturing conditions, complexes from fresh cytosol and from cytosol left for 2 h at 3 degrees C eluted from gel filtration as a single peak of radioactivity with a Stokes radius of approximately 7.7 nm, suggesting that no proteolysis of the complexes had occurred in either cytosol. When analyzed under denaturing conditions, however, whereas the fresh cytosol gave a receptor band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis at Mr approximately 90,000 (corresponding to the intact complex), the cytosol that had been left for 2 h at 3 degrees C gave only a fragment (Mr approximately 50,000). This fragment, just as the intact complex, could be thermally activated to a DNA-binding form. Proteolysis of the receptor could be blocked by preparing the cytosol in the presence of EGTA, leupeptin, or a heat-stable factor present in the cytosol of rat liver and WEHI-7 mouse thymoma cells. From these results we conclude: (i) 20 mM molybdate does not protect the nonactivated glucocorticoid-receptor complex present in rat thymus cytosol against proteolysis under conditions which are commonly used for cell-free labeling of the receptor, and (ii) the demonstration of a Stokes radius of approximately 8 nm for the nonactivated glucocorticoid-receptor complex is not sufficient to indicate that the receptor complex is present in its intact form.  相似文献   

11.
The rate of dissociation of labeled estradiol from [3H] estradiol-8-9 S receptor complexes ([3H]E2-8-9 S ER) molybdate-stabilized was determined in the presence of either an excess of unlabeled hormone ("chase") or of charcoal/dextran suspension ("stripping"). Biphasic dissociation of the hormone was observed in both cases, but the fraction of the fast-dissociating component was dramatically reduced (5% instead of 60%) when stripping was used. As the dissociation patterns were independent of the degree of saturation of the receptor, the results do not favor the possibility of cooperative effects between binding sites in the 8-9 S ER. After pretreatment of cytosol by charcoal at 28 degrees C for 15 min, the dissociation studied by chase displayed only the slowly dissociating component (t1/2 approximately 65 min). This effect was dependent on temperature and influenced by the ligand bound to 8-9 S ER, being pronounced with estradiol (E2) and absent with [3H]4-hydroxytamoxifen. The slow-dissociating component obtained after charcoal treatment was reconverted to fast-dissociating state by adding dithiothreitol or by incubation with cytosol at 20 degrees C. The charcoal treatment did not change the sedimentation coefficient (approximately 9 S) and the Stokes radius (approximately 7 nm) of the [3H]E2-8-9 S ER, and the slow-dissociating form obtained did not bind to DNA-cellulose either in the presence or absence of molybdate ions. Thus there are likely small but functionally significant changes of structure in the 8-9 S ER which remain in a non-DNA-binding form, whereas the rate of estradiol dissociation is modified.  相似文献   

12.
We have previously shown that the purified or unfractionated cytosolic, activated glucocorticoid receptor of rat liver consists of a polypeptide with a Stokes radius of approximately 6 nm, a sedimentation coefficient of 4S and a molecular mass of approximately 90,000 Daltons. We have confirmed previous observations by other authors that if sodium molybdate is introduced into the cytosol preparation buffer the non-activated glucocorticoid receptor appears as an 8 nm, 9S species with an apparent molecular mass of 330,000 Daltons. In order to study the physicochemical parameters of the glucocorticoid receptor prior to ligand binding, we have used an enzyme-linked immunosorbent assay (ELISA) based on antibodies raised in rabbits against the purified activated glucocorticoid receptor. In isotonic buffer, the non-liganded glucocorticoid receptor was shown to have a Stokes radius of 6 nm in the absence and 8 nm in the presence of molybdate. Furthermore, experimental conditions known to result in activation of the glucocorticoid receptor complex (increased ionic strength, increased temperature) did not lead to activation of the 6 nm non-liganded glucocorticoid receptor as judged from the lack of binding of the treated, non-liganded receptor to DNA-cellulose. The existence of both 6 and 8 nm forms of nonactivated, non-liganded glucocorticoid receptor in vitro suggests that dissociation of an 8 nm form to a 6 nm form, if it occurs in vivo, is probably not the only molecular event constituting the activation of the glucocorticoid receptor.  相似文献   

13.
The chick oviduct cytosol progesterone receptor can be transformed to a small form (Rs = 21A, S20,w:2.9) denoted "mero-receptor" by incubation in the presence of Ca2+ [8]. In the molybdate-free cytosol all the progestin binding components could be completely transformed to mero-form by 1 h treatment with 100 mM Ca2+ at 0 degrees C. If EDTA was secondarily added, the ligand was rapidly released. If molybdate (20 mM) containing cytosol was incubated with Ca2+, no radioactivity was found in the meroposition on the Agarose A 0.5 m column, but the bound steroid sedimented at 2.9 S in sucrose gradients containing Ca2+ (and no molybdate). When 20 nM molybdate was added to cytosol containing receptor activated by 0.3 M KCl, complete mero-transformation by Ca2+ was obtained also by the gel filtration criterion, indicating that molybdate does not inhibit the mero-transforming factor. Ligand-free progesterone receptor could also be completely converted to mero-form by endogenous cytosolic transforming factor and calcium. The transforming factor was completely inactivated, when cytosol was run through Agarose A 0.5 m gel. Mero-transformation was found to be irreversible. The purified progesterone receptor subunit 110 K (B) was partially converted to smaller forms by calcium alone (100 mM, 0 degrees C, 1 h) whereas addition of a small amount of cytosol allowed complete conversion to mero-form.  相似文献   

14.
Heparin dramatically enhanced the rate of unbound glucocorticoid receptor inactivation in vitro in a concentration, time and temperature-dependent manner. Control specific binding decreased only about 25% after incubation for 6 h at 4°C. However in the presence of heparin (40 μg per ml cytosol) receptor binding decreased about 75%. At 25°C liver receptor specific binding was found to have a half0life of about 60 min in control cytosol. However, in the presence of heparin (40 μg per ml cytosol) the glucocorticoid receptor had a half-life of only 15 min at 25°C. Interestingly, 10 mM molybdate (with or without 5 mM dithiothreitol) greatly inhibited heparin-dependent receptor inactivation at 4°C. Dithiothreitol (alone) significantly stabilized receptor binding in control samples at 4°C, but provided no protection from heparin-dependent receptor inactivation. Heparin had no apparent inactivating effect on prebound glucocorticoid receptor complexes at 4°C. Interestingly however, heparin altered the sedimentation coefficient of prebound hepatic glucococorticoid-receptor complexes in low salt gradients from 7–8 S to about 3–4 S. When molybdate plus dithiothreitol were added with heparin, the sedimentation coefficient was found to be approx. 6—7 S. These results demonstrate that heparin, which is often used pharmacologically and which occurs naturally in animal tissues, has significant effects on liver glucocorticoid receptors in vitro.  相似文献   

15.
V K Moudgil  C Hurd 《Biochemistry》1987,26(16):4993-5001
Effects of different transforming agents were examined on the sedimentation characteristics of calf uterine progesterone receptor (PR) bound to the synthetic progestin [3H]R5020 or the known progesterone antagonist [3H]RU38486 (RU486). [3H]R5020-receptor complexes [progesterone-receptor complexes (PRc)] sedimented as fast migrating 8S moieties in 8-30% linear glycerol gradients containing 0.15 M KCl and 20 mM Na2MoO4. Incubation of cytosol containing [3H]PRc at 23 degrees C for 10-60 min, or at 0 degrees C with 0.15-0.3 M KCl or 1-10 mM ATP, caused a gradual transformation of PRc to a slow sedimenting 4S form. This 8S to 4S transformation was molybdate sensitive. In contrast, the [3H]RU486-receptor complex exhibited only the 8S form. Treatment with all three activation agents caused a decrease in the 8S form but no concomitant transformation of the [3H]RU486-receptor complex into the 4S form. PR in the calf uterine cytosol incubated at 23 or at 0 degrees C with 0.3 M KCl or 10 mM ATP could be subsequently complexed with [3H]R5020 to yield the 4S form of PR. However, the cytosol PR transformed in the absence of any added ligand failed to bind [3H]RU486. Heat treatment of both [3H]R5020- and [3H]RU486-receptor complexes caused an increase in DNA-cellulose binding, although the extent of this binding was lower when RU486 was bound to receptors. An aqueous two-phase partitioning analysis revealed a significant change in the surface properties of PR following both binding to ligand and subsequent transformation. The partition coefficient (Kobsd) of the heat-transformed [3H]R5020-receptor complex increased about 5-fold over that observed with PR at 0 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In order to investigate the functional organization of the progesterone receptor in chromatin we characterized the physical-chemical properties of the receptor bound chromatin fragments released by micrococcal nuclease and DNase I digestion. The crude nuclear fraction was isolated from T 47 D cells, previously exposed to 0.1 microM [3H]ORG 2058. The parameters determined in low and high salt concentrated buffers were: sedimentation coefficients (S) on a sucrose gradient, Stokes radii (Rs) by gel filtration on a Sephadex G-200 column and the binding abilities to a DNA-cellulose column. The molecular weights (Mr) and frictional ratios (f/fo) were calculated from the S and Rs values. Micrococcal nuclease digestion solubilized a receptor form sedimenting as a single peak at 4.4 S with a Rs = 7.78 nm and an estimated Mr = 144,000. About 53% of the applied receptor bound to a DNA-cellulose column could be eluted by high salt concentrated buffer. 0.4 M KCl dissociated this receptor form into a smaller receptor sedimenting at 3.3 S with Rs = 5.53 nm and a calculated Mr = 76,000. A similar receptor form was extracted by 0.6 M KCl from the undigested crude nuclear fraction. DNase I digestion solubilized a receptor form sedimenting at 3.3 S with a Rs = 6.87 nm and a calculated Mr = 94,000. About 26% of the applied receptor bound to a DNA-cellulose column could be eluted by high salt concentrated buffer. Dissociation of this receptor form by 0.4 M KCl resulted in a receptor sedimenting at 2.8 S with a Rs = 6.53 nm and an estimated Mr = 76,000. These results suggest: The progesterone receptor in chromatin is associated with several molecules probably proteins which complexed it to DNA. Some of these molecules still associated with the progesterone receptor could be released by nucleases digestion. Micrococcal nuclease releases a larger portion of these molecules than those release by DNase I.  相似文献   

17.
In structure and general mode of action, the Ah receptor is very similar to the receptors for steroid hormones. Molybdate previously has been shown to be highly effective at preserving ligand-binding function in steroid receptors during their exposure to elevated temperature or high ionic strength and at stabilizing steroid receptors as high molecular weight oligomeric complexes. Since such stabilization by molybdate can be very useful during characterization and purification of receptors, we tested the effects of molybdate on the Ah receptor to determine if the Ah receptor, like the receptors for steroid hormones, might be stabilized. In hepatic cytosols from C57BL/6N mice and Sprague-Dawley rats, molybdate concentrations up to 30 mM in homogenizing and analysis buffers did not alter the concentration of specific Ah receptor sites detected by binding of [3H]2,3,7,8-tetrachlorodibenzo-p-dioxin. However, inclusion of 20 mM molybdate in the homogenizing buffer did significantly protect unliganded Ah receptor from thermal inactivation at 20 degrees C and from KCl-induced loss of ligand-binding ability. In accord with previous reports, 20 mM molybdate in homogenizing and analysis buffers greatly increased the concentration of detectable glucocorticoid receptor in rat hepatic cytosol and estrogen receptor in rat uterine cytosol. Exposure to 0.4 M KC1 caused the glucocorticoid receptor from rat liver to shift sedimentation from approximately equal to 8 S to approximately equal to 4 S and caused a severe loss of specific glucocorticoid binding. Presence of 20 mM molybdate stabilized the glucocorticoid receptor as a single discrete peak sedimenting at approximately equal to 8 S. In contrast, the Ah receptor from rat liver exposed to 0.4 M KC1 in the presence of molybdate sedimented as biphasic peaks; one peak (approximately equal to 9.5 S) corresponded to the form of Ah receptor observed at low ionic strength, while the other peak (approximately equal to 5.5 S) corresponded to the form of Ah receptor seen in cytosol treated with 0.4 M KC1 in the absence of molybdate. Addition of heparin to hepatic cytosols from mice or rats shifted sedimentation of Ah receptor from approximately equal to 9.5 S to approximately equal to 5.5 S. Molybdate, again, provided stabilization in the approximately equal to 9.5 S form, but only for about one-half the total Ah receptor content in both rat and mouse hepatic cytosols. In sum, molybdate is far less effective at stabilizing rodent Ah receptors than it is at stabilizing steroid receptors in the same species.  相似文献   

18.
In a previous work we demonstrated estrogen-inducible progesterone binding sites in the bursa of Fabricius. In the present study these were characterized and compared to the progesterone receptor (PR) in the chick oviduct. When the size of the binding sites was analyzed with sucrose gradient centrifugation, 2 peaks of bound progesterone were obtained. The sedimentation coefficients of the peaks were 8-9 S and 3-4 S. In size exclusion HPLC only 1 peak was seen with a size corresponding to the 8-9 S in the sucrose gradient. The Stokes radius was 7.7 nm. When the ionic strength was elevated or CaCl2 was added, smaller steroid binding forms were detected. The sizes of these progesterone binding molecules at low and high ionic strength and in the presence of CaCl2 were equal in bursa and oviduct when analyzed with HPLC. The Stokes radii of these forms were 5.6 nm in high salt and 2.1 nm with CaCl2. The steroid binding components in the bursa cytosol eluated as 2 peaks from the DEAE column with KCl gradient. The peaks corresponded to the so-called A and B components in the chick oviduct. In the presence of molybdate, bound progesterone eluated as one peak from DEAE in both oviduct and bursa. The progesterone binding capacity was shown to be heat labile with equal half-lives in the bursa and the oviduct. Progesterone and ORG 2058 had a high affinity for the binding site and their binding was specific for progestins. It is concluded that the estrogen-inducible progesterone binding site in the bursa of Fabricius resembles the oviductal progesterone receptor in structural and binding properties.  相似文献   

19.
The Ah receptor regulates induction of cytochrome P450IA1 (aryl hydrocarbon hydroxylase) by "3-methylcholanthrene-type" compounds and mediates the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons. Hepatic Ah receptor from untreated rodents is localized in the cytosol and has an apparent molecular mass of 250 to 300 kDa. This large form can be dissociated into a smaller ligand-binding subunit upon exposure to high ionic strength. The Ah receptor displays many structural similarities to the receptors for steroid hormones. Two non-ligand-binding proteins have been identified to be associated with the cytosolic forms of the steroid hormone receptors. The first is a 90-kDa heat shock protein (hsp 90); the second is a 59-kDa protein (p59) of unknown function. The cytosolic Ah receptor ligand-binding subunit previously has been shown to be associated with hsp 90. In the present study, we used a monoclonal antibody, KN 382/EC1, generated against the 59-kDa protein which is associated with rabbit steroid receptors to determine if p59 also is a component of the large cytosolic Ah receptor complex. Cytosolic forms of rabbit progesterone receptor, glucocorticoid receptor, and Ah receptor were analyzed by velocity sedimentation on sucrose gradients under low-ionic-strength conditions and in the presence of molybdate. Progesterone receptor from rabbit uterine cytosol and glucocorticoid receptor from rabbit liver each had a sedimentation coefficient of approximately 9 S. In the presence of KN 382/EC1 antibody the progesterone receptor and the glucocorticoid receptor both underwent a shift in sedimentation to a value of approximately 11 S. The increase in sedimentation velocity is an indication that the receptor-protein complexes are interacting with the antibody. Under low-ionic-strength conditions the Ah receptors from rabbit uterine cytosol and liver cytosol had a sedimentation coefficient of approximately 9 S. However, in contrast to the steroid receptors, the Ah receptor showed no change in its sedimentation properties in either tissue in the presence of KN 382/EC1, indicating that the antibody is not interacting with the Ah receptor. Multimeric Ah receptor complexes that were chemically crosslinked still did not show any interaction with KN 382/EC1. These data indicate that the 59-kDa protein either is not associated with the Ah receptor or is present in an altered form which the antibody cannot recognize.  相似文献   

20.
The non-transformed, molybdate-stabilized chick oviduct cytosol progesterone receptor was purified approx. 7000-fold using biospecific affinity resin (NADAC-Sepharose), DEAE-Sephacel chromatography and gel filtration on Bio-Gel A-0.5m agarose. The purified preparation contained progesterone receptor which sedimented as a 7.9S molecule, had a Stokes' radius of 7.5 nm, was composed of three major peptides corresponding to Mr 108,000, 90,000 and 79,000. Upon removal of molybdate, the purified [3H]progesterone-receptor complex could be transformed from the 8S form to a 4S form by exposure to 23 degrees C or by an incubation with 10 mM ATP at 0 degrees C. The purified thermally transformed receptor could be adsorbed to columns of ATP-Sepharose. No cytosol factor(s) appeared to be required for the 8S to 4S transformation of purified receptor or for its subsequent binding to ATP-Sepharose. Incubation of purified non-transformed receptor preparation with [gamma-32P]ATP and cAMP-dependent protein kinase led to incorporation of radioactivity in all the three major peptides at serine residues. The results of this study show for the first time that purified 8S progesterone receptor can be phosphorylated in vitro by a cAMP-dependent protein kinase, and that it can be transformed to a 4S form by 0 degrees C incubation with 10 mM ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号