首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Huang H  Yuan X  Zeng G  Zhu H  Li H  Liu Z  Jiang H  Leng L  Bi W 《Bioresource technology》2011,102(22):10346-10351
Liquefaction residues (LR) are the main by-products of sewage sludge (SS) liquefaction. This study quantitatively evaluates the potential ecological risk and pollution degrees of heavy metals (Pb, Zn, Cu, Cd, Cr and Ni) in LR versus SS. The leaching rates (R1) of heavy metals in LR were much lower than those in SS, revealing that the mobility/leachability of heavy metals was well suppressed after liquefaction. Geo-accumulation index (Igeo) indicated that the liquefaction process significantly weakened the contamination degrees of heavy metals. Potential ecological risk index (RI) demonstrated that overall risks caused by heavy metals were obviously lowered from 1093.56 (very high risk) in SS to 4.72 and 1.51 (low risk) in LR1 and LR2, respectively. According to the risk assessment code (RAC), each tested heavy metal had no or low risk to the environments after liquefaction. In a word, the pollution hazards of heavy metals in LR were markedly mitigated.  相似文献   

2.
The aims of this paper were to assess the variation of heavy metal (Cu and Zn) fractions and mobility in abandoned metal mine soil due to batch experimental leaching. Four solutions with different pH levels were used in the experiments. The total and fractional concentrations of heavy metals in untreated and leached soils were determined. The Kruskal–Wallis test was applied to verify the differences in the Cu and Zn distribution in soils before and after leaching. In order to assess the mobility of heavy metals, mobility factors (MFs) were calculated. The research results showed that the original/untreated soil was mainly of a sandy texture and acidic in character. After batch leaching for 7 days, the distribution of heavy metals was dominant in the residual fraction (F5). Heavy metal fractions in F1, F2, F3, and F5 showed a decreasing trend, but an increasing trend in F4 was observed. Among the solutions applied having different pH values, HCl (pH 3) illustrated the strongest effect on decreasing heavy metals in short-term mobile fractions (F1 and F2). The MF of Zn decreased more than that of Cu after 7-day batch leaching.  相似文献   

3.
The presence of heavy metals in the sludges produced in wastewater treatment plants restricts their use for agricultural purposes. This study looks at different types of sludge (aerobic, anaerobic, unstabilised, sludge from a waste stabilisation pond, sludge from an extended aeration plant and heat treated sludge) and compares the distribution of heavy metals with the treatment that they have undergone. In addition, the total quantity of metals (Cd, Cr, Cu, Ca, K, Fe, Mg, Ni, Na, Pb and Zn) and some agronomic parameters necessary for characterising a sludge as suitable for use as amendment were determined. The BCR method for heavy metal speciation was followed. Principal component analysis (PCA) was applied in order to obtain more information about metal speciation in the sewage sludges. It was confirmed that the concentration of heavy metals did not exceed the limits set out by European legislation and that the stabilisation treatment undergone by the sludges strongly influenced the heavy metal distribution and the phases to which they were associated. The waste stabilisation pond sludge, which has undergone a higher degree of mineralisation than the others, shows a lower metal bioavailability index since practically all the heavy metals in it are associated to the oxidisable and residual fraction. On the other hand the unstabilised sludge, which, along with that exposed to extended aeration, contains the highest accumulations of heavy metals in the most easily assimilable fractions.  相似文献   

4.
This study investigated the concentrations of Co, Cr, Cu, Mn, Ni, Pb and Zn in surface soil and corn cob samples collected from agricultural fields near a coal mine from Huaibei, China. Meanwhile, the mobility and availability of heavy metals in soil samples were evaluated by a modified three-step The European Community Bureau of Reference (BCR) sequential extraction procedure. The total concentrations of metals in soil pose no ecological threats to the local plants. Transfer factors of essential metals, Cu and Zn, as well as those of non-essential metal Pb, were higher than those of the remained metals. The results of BCR fractionation analysis revealed that the acid soluble, reducible and oxidizable fractions of the Mn, Pb and Zn were higher than those of the residual fraction, suggesting that these elements may be more bioavailable. The pH and organic matter contents of soil were significant parameters affecting speciation of metals in soil samples. Hierarchical cluster analysis indicated significant correlations between metal levels in corn grains and more available (acid soluble and reducible) fractions in soil, indicating that heavy metals in the first two fractions were more available for corn crops. The elevated mobility and bioavailability of Pb in soil are of great concern in the study area.  相似文献   

5.
Abstract

The relationships are evaluated between the heavy metal species in sediments and the accumulation by the soft tissues of Saccostrea cucullata collected from the northern and southern coasts of Qeshm Island, Persian Gulf. The sequential extraction technique was employed to fractionate the sediment into non resistant and resistant fractions. Data from sequential extractions indicated that the metals were mainly associated with the residual fraction at the north coast and with non residual fractions at the south coast. The results showed that the best correlations were observed between heavy metals concentrations in soft tissues and the fractions in the southern sediment. Note that the bioavailability of trace metals is influenced by the chemical characteristics and properties of the sediment. Therefore, the present results generally supported the use of soft tissues of S. cucullata as a more accurate biomonitoring organism for Cu, Pb and Cd in sediments from the southern coast of Qeshm Island, Persian Gulf.  相似文献   

6.
A field experiment, lasting 14 months, was carried out in order to assess the effect of organic amendment and lime addition on the bioavailability of heavy metals in contaminated soils. The experiment took place in a soil affected by acid, highly toxic pyritic waste from the Aznalcóllar mine (Seville, Spain) in April 1998. The following treatments were applied (3 plots per treatment): cow manure, a mature compost, lime (to plots having pH < 4), and control without amendment. During the study two crops of Brassica juncea were grown, with two additions of each organic amendment. Throughout the study, the evolution of soil pH, total and available (DTPA-extractable) heavy metals content (Zn, Cu, Mn, Fe, Pb and Cd), electrical conductivity (EC), soluble sulphates and plant growth and heavy metal uptake were followed. The study indicates that: (1) soil acidification, due to the oxidation of metallic sulphides in the soil, increased heavy metal bioavailability; (2) liming succeeded in controlling the soil acidification; and (3) the organic materials generally promoted fixation of heavy metals in non-available soil fractions, with Cu bioavailability being particularly affected by the organic treatments.  相似文献   

7.
The presence of heavy metals in sludge stabilized in a reed bed system may affect its use for agricultural purposes. However, the environmental impact of sludge depends on the availability and phytotoxicity of these heavy metals.The aim of this research was to determine the effectiveness of a reed bed (Phragmites australis) sludge treatment system in two urban wastewater treatment plants in Italy after a three-year period of operation: (i) by estimating the process of sludge stabilization, following conventional and nonconventional parameters related to the evolution of organic matter quality (water soluble carbon, dehydrogenase activity, pyrolytic fragments); (ii) by following the heavy metal bioavailability in the sludge through their fractionation. For heavy metal fractionation, the Community Bureau of Reference (BCR) was followed.The results showed that there was mineralization and stabilization of sludge over time, suggested by the decrease of about 35% in water soluble carbon and of about 60-80% of dehydrogenase activity. Moreover, significant values of benzene (17%), toluene (31%) and phenol (9%) were found at the end of experimentation in both treatment wetlands, highlighting the re-synthesis of humic-like matter.The results also showed that the content of heavy metals after 30 months was associated with the less mobile fractions of the sludge (more than 60% of total heavy metal content for almost metal), in particular, the fraction linked to the organic matter.  相似文献   

8.
ABSTRACT

EDTA is useful to assess mobile metal pools in polluted soils and sediments. There is a need to enhance our understanding of the significance of metal fractions released. The impact of single reagent extraction with 0.05 mol L?1 EDTA on the solid phase distribution of trace metals in surface soils sampled from confined dredged sediment disposal sites was investigated. Not extracted and EDTA extracted soils were subjected to sequential extraction to fractionate the total contents into: (1) easily exchangeable and carbonate bound fraction; (2) reducible fraction; (3) oxidisable fraction; and (4) residual fraction. With EDTA, significant portions of metals associated with the acid extractable and reducible fractions were released. The oxidisable and residual fractions remained unaffected for most of the investigated metals except for the organic matter associated metals (Cu and Pb). A decrease in the residual fraction after EDTA-extraction for Cu and Pb was attributed to artifacts of the sequential extraction procedure.  相似文献   

9.
Phytoextraction, the use of plants to extract heavy metals from contaminated soils, could be an interesting alternative to conventional remediation technologies. However, calcareous soils with relatively high total metal contents are difficult to phytoremediate due to low soluble metal concentrations. Soil amendments such as ethylene diaminetetraacetate (EDTA) have been suggested to increase heavy metal bioavailability and uptake in aboveground plant parts. Strong persistence of EDTA and risks of leaching of potentially toxic metals and essential nutrients have led to research on easily biodegradable soil amendments such as citric acid. In our research, EDTA is regarded as a scientific benchmark with which degradable alternatives are compared for enhanced phytoextraction purposes. The effects of increasing doses of EDTA (0.1,1,10 mmol kg(-1) dry soil) and citric acid (0.01, 0.05, 0.25, 0.442, 0.5 mol kg(-1) dry soil) on bioavailable fractions of Cu, Zn, Cd, and Pb were assessed in one part of our study and results are presented in this article. The evolution of labile soil fractions of heavy metals over time was evaluated using water paste saturation extraction (approximately soluble fraction), extraction with 1 M NH4OAc at pH 7 (approximately exchangeable fraction), and extraction with 0.5 M NH4OAc + 05 M HOAc + 0.02 M EDTA at pH 4.65 (approximately potentially bioavailable fraction). Both citric acid and EDTA produced a rapid initial increase in labile heavy metal fractions. Metal mobilization remained constant in time for soils treated with EDTA, but a strong exponential decrease of labile metal fractions was noted for soils treated with citric acid. The half life of heavy metal mobilization by citric acid varied between 1.5 and 5.7 d. In the following article, the effect of heavy metal mobilization on uptake by Helianthus annuus will be presented.  相似文献   

10.
【背景】从活性污泥中分离出一类具有硫酸盐还原能力的菌株,探讨了其用于铅锌冶炼渣重金属污染修复的可行性。【目的】研究硫酸盐还原菌(Sulfate reducing bacteria)对铅锌冶炼渣中重金属的固化作用。【方法】将从活性污泥中分离出的硫酸盐还原菌接种到铅锌冶炼渣中进行修复,采用X射线衍射、Tessier、电感耦合等离子体发射光谱仪检测、高通量测序等方法进行实验。检测铅锌冶炼渣中矿物组成,以及修复过程中重金属化学形态、各金属离子浓度和微生物群落结构的变化。【结果】修复实验表明,体系中电位降低、pH值提高、各重金属稳定态增加、离子浓度降低且微生物群落结构变化显著,硫酸盐还原菌成为优势菌群。【结论】接种硫酸盐还原菌后铅锌冶炼渣中的重金属原位固化效果显著,从而降低生物可利用性,将恶性循环变为良性循环,所以硫酸盐还原菌可用作重金属污染修复的固化药剂。  相似文献   

11.
Respirometric experiments demonstrated that the oxygen uptake by Thiobacillus ferrooxidans strain LR was not inhibited in the presence of 200 mM copper. Copper-treated and untreated cells from this T. ferrooxidans strain were used in growth experiments in the presence of cadmium, copper, nickel and zinc. Growth in the presence of copper was improved by the copper-treated cells. However, no growth was observed for these cells, within 190 h of culture, when cadmium, nickel and zinc were added to the media. Changes in the total protein synthesis pattern were detected by two-dimensional polyacrylamide gel electrophoresis for T. ferrooxidans LR cells grown in the presence of different heavy metals. Specific proteins were induced by copper (16, 28 and 42 kDa) and cadmium (66 kDa), whereas proteins that had their synthesis repressed were observed for all the heavy metals tested. Protein induction was also observed in the cytosolic and membrane fractions from T. ferrooxidans LR cells grown in the presence of copper. The level of protein phosphorylation was increased in the presence of this metal.  相似文献   

12.
Abstract

Metal fractionation is a powerful tool for studying the mobility, bioavailability and toxicity of metals in sediments and soils. A seven-step sequential extraction technique was used to determine the potential mobility of selected heavy metals (Fe, Mn, Zn, Cu, Pb, Cd and Ni) in the sediments of Lake Naivasha. Results indicate that residual fraction was the most important phase for the elements Fe, Mn, Cu and Zn. However, Pb and Cd are highly enriched in the non-residual phases. Nickel on the other hand was distributed evenly between the non-residual and the residual fractions.

The total concentrations of the heavy metals suggested a decreasing order of iron ?> manganese ? zinc > nickel > copper ? lead > cadmium. However, the detailed sequential extraction data indicated an order of release or mobility of cadmium > lead ? nickel ? zinc > manganese > copper > iron. The high percentage of Cd and Pb in the mobile fractions suggests high bioavailability of these two elements in the study area and maybe a pointer to anthropogenic input of the two elements in the study area.  相似文献   

13.
污染土壤重金属的生物有效性和移动性评价:四种方法比较   总被引:21,自引:1,他引:21  
重金属在土壤中的积累可增加土壤对生态环境的危害,而这种危害与土壤中重金属的活性有关.本文以植物体重金属浓度和地表径流重金属浓度为依据,比较研究了总量法、化学形态分级法、有效成分提取法和淋洗法4种方法评价污染土壤中重金属的生物有效性和移动性的可行性.结果表明,不同方法的评价结果有较大的差异.由于不同土壤的重金属组成有很大的差异,总量法难以反映土壤重金属的生物有效性和移动性;化学形态分级法中的交换态重金属可较好地反映土壤重金属的生物有效性和移动性,有机质结合态和碳酸盐结合态的某些重金属与其生物有效性和移动性也有一定的联系,而氧化物结合态、残余态重金属与重金属的生物有效性和移动性无关;用淋洗方法溶出的重金属量可很好地反映地表径流中重金属的浓度,也可较好地反映重金属的生物有效性;5种化学提取剂提取有效态重金属的结果表明,稀盐(0.01 mol·L-1 CaCl2)和1 mol·L-1 NH4OAc提取的土壤重金属量与植物中重金属的积累和地表径流中重金属浓度均显著相关,可较好地表征土壤中重金属的生物有效性和移动性,其中稀盐(0.01 mol·L-1 CaCl2)提取的重金属最适于评价重金属的可移动性.  相似文献   

14.
Biological samples were collected simultaneously with environmental quality investigations. Studies of metal levels in biological (hair and teeth) and environmental (soil and air) samples were performed in Zwardoń during 1991/1992. Zwardoń is a small mountain resort village, situated on the border pass of Zwardoń, in the close proximity of the southwestern border of Poland. Heavy metal levels in soil, air, and chemical metals forms in the soil were examined. Pearson’s product correlation in soil (for total concentration of heavy metals and each chemical form) in hair and in teeth was calculated to investigate bioavailability of heavy metals in human organism. We received essential correlations simultaneously between: Pb vs Mn in exchangeable form of metal in soil, in teeth and in soil (total); Cd vs Zn and Mn vs Co in organically bound form in soil and in teeth and soil (total); and Cu vs Zn in all investigated samples (teeth, hair, soil total, and organically bound form in soil); Mn vs Co and Cr vs Mn in residual form in soil, in teeth, and in soil (total) and between Co vs Ni for hair, soil (total), and residual form in soil.  相似文献   

15.
Abstract

Selected heavy metals Fe, Cd, Ni and Cr were studied in contaminated soil samples collected from south-eastern Nigeria. Geochemical differentiation into different chemical fractions, using Ma and Rao six-step sequential chemical extraction procedure, was carried out to assess the potential mobility and bioavailability of the heavy metals in the soil profiles. The residual fraction was the most important phase for the four heavy metals with the following average percentage values 74.43 for Fe, 37.69 for Cd, 70.11 for Ni and 62.47 for Cr. The carbonate fraction contained an appreciable proportion of Fe, Cd and Ni with the average percentage values of 16.29, 14.86 and 10.47 respectively, while organic fraction was of next importance for Cr with an average percentage value of 27.14. The Fe-Mn oxide fraction also contained 15.86% of Cd. Relatively low amounts of the metals were associated with water soluble and exchangeable fractions. The mobility factors for the metals in all the sites ranged from 8.55 to 40.04 for Fe, 8.66 to 56.58 for Cd, 12.74 to 30.19 for Ni and 0.82 to 7.22 for Cr. The generally low values of mobility factors coupled with significantly high levels of association of the metals with the residual fraction, indicate that the metals do not pose any environmental risk nor hazard.  相似文献   

16.
Abstract

The bioavailability and leachability of heavy metals play a major role in the toxicity of heavy metals in the compost applied for soil conditioning. A rotary drum composter was used for the study of heavy metal bioavailability and leachability during water hyacinth composting with a mixture of cattle manure, sawdust and lime. Lime was added in 1, 2 and 3% to the mixture of water hyacinth, cattle manure and sawdust at a ratio of 6:3:1 respectively. Influences of physico-chemical parameters on heavy metal bioavailability and leachability were studied during the process. The bioavailability of heavy metals solubility and diethylene triamine penta-acetic acid extractability was examined. The toxicity characteristics leaching procedure (TCLP) test was performed for assessing the hazardous properties of compost. The nutrients and the total concentration of heavy metals were increased during the composting process. The lime was very effective in reducing water solubility, plant availability and leachability of the selected heavy metals (Zn, Cu, Mn, Fe, Ni, Pb, Cd and Cr) during the process. The addition of lime provided a buffer against the decrease in pH and a sufficient amount of Ca that would improve the metabolic activity during composting. The addition of an excess amount of lime slowed the metabolic activity of the microbes due to its high alkalinity. The TCLP test confirms that the heavy metals concentrations in the control and in the lime-amended compost were below the threshold limits.  相似文献   

17.
A five-stage sequential leaching procedure was used to determine the distribution of 10 metals in three combination samples taken from waste rock material, originating from a Finnish zinc mine, and used as railway ballast in Northern Finland. The leaching procedure consists of the following five sequential fractions: a water-soluble fraction (H2O), an exchangeable fraction (CH3COOH), an easily reduced fraction (NH2OH-HCl), an oxidizable fraction (H2O2 + CH3COONH4), and a residual fraction (HF + HNO3 + HCl). The results show, in accordance with all earlier corresponding studies, that a sequential extraction procedure is very suitable for evaluating the effects of external conditions on the solubility of harmful heavy metals, and that external conditions have a large effect on their leachability/solubility, and therefore on their mobility, bioavailability, and environmental risk. In addition, the total concentration of each element is much larger than its solubility in each of the first four fractions (1)–(4) – the potential bioavailability fractions – because the highest concentrations of all metals occurred in the residual fraction (5). The conditions of this phase – three strong acids and strong, long-lasting shaking – are never possible in nature, and therefore the residual fraction is called the inert phase. Thus, the total concentrations of the heavy metals are poor measures of real environmental risk and give no information about the effect of external conditions on their solubility. In addition, the dependency of different elements on the external conditions differs.  相似文献   

18.
An incubation experiment was executed on applying biochar as a soil remediation amendment to discuss an effect of the various addition rates on the speciation and bioavailability of heavy metals in mining-contaminated soil. The result showed that the content of Cd in soil was 9.51 times higher than the Huainan soil background values. The contents of Cu, Zn and As were 2.97, 1.60 and 1.42 times the background values, respectively, and the total contents of all heavy metals were higher than the standard values of soil environment quality GB15618-1995 set by the China Ministry of Environmental Protection. Speciation analysis indicated that Cu and Cd were mainly associated with the reducible fraction, while Zn and As were dominated by the residual fraction. After biochar was added to contaminated soil, the residual fractions of heavy metals increased, while the acid-soluble fractions reduced. According to the results of CaCl2 extraction experiment, CaCl2-extractable concentrations of Cu, Zn, As, and Cd were observed with a biochar dosage rate of 10%, which were 57.26%, 51.37%, 6.94% and 42.04% lower than those of control soil samples, respectively, but there were no obvious changes of CaCl2-extractable As.  相似文献   

19.
食用菌生物修复重金属污染研究进展   总被引:3,自引:0,他引:3  
Liu JF  Hu LJ  Liao DX  Su SM  Zhou ZK  Zhang S 《应用生态学报》2011,22(2):543-548
生物修复是利用生物体及其衍生物对重金属进行吸收/吸附来处理环境中重金属污染的方法,具有成本低、来源广、无二次污染等特点.食用菌富集重金属是生物修复的一个重要研究方向,食用菌修复作用主要通过对重金属的吸收来降低其生态毒性,从而对重金属污染起到一定的修复作用.本文论述了食用菌对重金属Cu、Cd、Pb、Zn、As、Cr的富集作用,揭示了食用菌富集重金属的可能机理,并对采用食用菌富集重金属以治理环境污染的前景进行了展望.  相似文献   

20.
Selecting native plant species with characteristics suitable for extraction of heavy metals may have multiple advantages over non-native plants. Six Australian perennial woody plant species and one willow were grown in a pot trial in heavy metal-contaminated biosolids and a potting mix. The plants were harvested after fourteen months and above-ground parts were analysed for heavy metal concentrations and total metal contents. All native species were capable of growing in biosolids and extracted heavy metals to varying degrees. No single species was able to accumulate heavy metals at particularly high levels and metal extraction depended upon the bioavailability of the metal in the substrate. Metal extraction efficiency was driven by biomass accumulation, with the species extracting the most metals also having the greatest biomass yield. The study demonstrated that Grevillea robusta, Acacia mearnsii, Eucalyptus polybractea, and E. cladocalyx have the greatest potential as phytoextractor species in the remediation of heavy metal-contaminated biosolids. Species survival and growth were the main determinants of metal extraction efficiency and these traits will be important for future screening of native species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号