首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Although most colobines feed mainly on leaves and a few feed heavily on seeds, colobine digestive adaptations for folivory are thought to preclude the high use of ripe fleshy fruits. In this long-term study of Semnopithecus vetulus nestor, the endemic western purple-faced langur of Sri Lanka, I investigated the feeding ecology and dietary flexibility for fruit feeding in 2 free-ranging groups (PT1 and R1) living in human-modified environments with abundant cultivated fruit, at Panadura and Piliyandala, for 19 mo and 13 mo respectively, using scan-sampling, vegetation enumeration, and phenological studies. In contrast to folivorous forest-living colobines, including other subspecies of Semnopithecus vetulus, my focal groups used more fruit (>50%) than foliage (PT1: 36%; R1: 34%). Both groups used many plant species (PT1 115; R1 59), but selected their food species, fruits over leaves, and young leaves over mature leaves. Fruit use was independent of young leaf availability. Notably, 78.4% and 83.4% of fruits consumed by PT1 and R1 were fleshy and human-edible, most of which were ripening or ripe (PT1: 72.4%; R1: 94.8%). The main fruit for both groups was Artocarpus heterophyllus (Moraceae; jakfruit), a cultivar with fleshy fruit. These findings differ from previous understanding of colobine diets. I suggest that environmental factors, such as the abundance and nature of available fruits, and the absence of arboreal-primate fruit competitors, could influence the use of ripe fleshy fruits by colobines strongly, highlighting the need to review the dietary and digestive flexibility of this group in changed and changing natural environments to formulate effective conservation action.  相似文献   

2.
Folivory has been accepted as the general dietary pattern for colobines. However, recent ecological studies have revealed that extensive seed eating is found in some colobine species. The ripeness of foraged seeds is also reported to differ between seed eaters. As seeds are generally stress‐limited and may pose greater mechanical demands, seed‐eating species are predicted to exhibit morphological features adaptive for seed predation. In addition, species that feeds on seeds from unripe fruits with hard pericarp is predicted to exhibit increased leverage for anterior dentition. To test these hypotheses, we compared the craniodental morphology of seed‐eating Asian colobines (Presbytis rubicunda and Trachypithecus phayrei) with those of species that rarely exploit seeds (Presbytis comata, Trachypithecus obscurus, and Semnopithecus vetulus). The results show that the seed‐eating colobines possess a masticatory system with enhanced leverage at postcanine bite points. The sclerocarpic forager P. rubicunda also exhibits markedly greater masticatory leverage at anterior dental bite points, while the mature‐seed‐eating T. phayrei shows no such advantage for canine and incisor use. These observations suggest that P. rubicunda is well adapted to husking the resistant pericarps of unripe fruits, using the anterior dentition and to gain access to the immature seeds, whereas such sclerocarpic feeding behavior may be less important for T. phayrei. Our findings indicate that the distinctive craniodental variations of colobines may be linked to mature and/or immature seed eating and suggest the significance of seed predation for the evolution of colobine monkeys. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
The two recently proposed taxonomies of the langurs and leaf monkeys (Subfamily Colobinae) provide different implications to our understanding of the evolution of Nilgiri and purple-faced langurs. Groves (2001) [Groves, C.P., 2001. Primate Taxonomy. Smithsonian Institute Press, Washington], placed Nilgiri and purple-faced langurs in the genus Trachypithecus, thereby suggesting disjunct distribution of the genus Trachypithecus. [Brandon-Jones, D., Eudey, A.A., Geissmann, T., Groves, C.P., Melnick, D.J., Morales, J.C., Shekelle, M., Stewart, C.-B., 2003. Asian primate classification. Int. J. Primatol. 25, 97-162] placed these langurs in the genus Semnopithecus, which suggests convergence of morphological characters in Nilgiri and purple-faced langurs with Trachypithecus. To test these scenarios, we sequenced and analyzed the mitochondrial cytochrome b gene and two nuclear DNA-encoded genes, lysozyme and protamine P1, from a variety of colobine species. All three markers support the clustering of Nilgiri and purple-faced langurs with Hanuman langur (Semnopithecus), while leaf monkeys of Southeast Asian (Trachypithecus) form a distinct clade. The phylogenetic position of capped and golden leaf monkeys is still unresolved. It is likely that this species group might have evolved due to past hybridization between Semnopithecus and Trachypithecus clades.  相似文献   

4.
Field studies on Semnopithecus vetulus have shown high folivory and the ability to feed heavily on mature leaves, which are constantly available. In research spanning 19 mo, I examined the feeding behavior of 2 free-ranging groups of Semnopithecus vetulus nestor in home gardens and rubber monocultures at Panadura (PT1 group) and Piliyandala (R1 group), Sri Lanka. Overall, results showed that >80% of their diet comprised seasonal plant parts, largely fruits. Despite differences in spatial and temporal food availability in their respective habitats, seasonal plant parts dominated the diets of both groups except briefly (2 mo) for R1 when mature leaf petioles were the main plant food. Both groups increased their use of seasonal foods with heightened seasonal food availability, and increased dietary diversity with declining use of their highest-ranked specific item of diet: fruits of Artocarpus heterophyllus (jakfruit, Moraceae). PT1, which was in a species-rich environment, maintained a high intake of seasonal foods year round by exploiting a large number of species, mainly for fruits. In contrast, R1, in a habitat with significantly lower tree species richness, had a less diverse diet but maintained an equally high intake of seasonal foods, primarily fruits and seeds, by exploiting a few species heavily. My study also highlights the dietary flexibility of a single colobine species in space and time. Such information is useful for conservation planning because rapidly occurring changes are taking place in natural colobine habitats.  相似文献   

5.
Comparative studies of sympatric species are essential for understanding behavioral and ecological adaptation as well as the mechanisms that can reduce resource competition to allow coexistence.Fran?ois' langurs(Trachypithecus francoisi) and Assamese macaques(Macaca assamensis) are sympatric primate species found in the limestone seasonal rainforests of Nonggang Nature Reserve,southwestern Guangxi, China. To explore their different adaptation strategies, we collected data on diet using scan sampling at 15-min intervals. Our results revealed that Fran?ois' langurs showed a more flexible diet composition than Assamese macaques.Fran?ois' langurs increased dietary diversity and mature leaf consumption in response to seasonal scarcity of preferred young leaves and fruits, whereas Assamese macaques relied heavily on young bamboo leaves(Indocalamus calcicolus) in most months.These variations reflect the differences in digestive physiology, morphology, and the temporal and spatial distribution of food resources.  相似文献   

6.
Understanding the mechanisms by which organisms respond to environmental change is critical to conservation biology. Recent research indicates that the gut microbiome may mediate mammalian responses to the environment and can be used as a biomarker to understand host ecological strategies. Here, we explore the relationship between the gut microbiome, host dietary niche, and potential resilience to habitat alteration using two closely related, sympatric non-human primate species: the tufted gray langur (Semnopithecus priam) and the purple-faced langur (Semnopithecus vetulus). The gray langur is suspected to be a habitat generalist less perturbed by anthropogenic disturbance, while the purple-faced langur is suspected to be a specialist more sensitive to disturbance. To test these characterizations, we assessed the gut microbiome using 16S rRNA gene amplicon sequencing of fecal samples collected from Kaludiyapokuna Forest Reserve, Sri Lanka (gray langur n = 50 samples, purple-faced langur n = 7 samples). Our results demonstrate that despite strong gut microbial similarities, gray langurs had a more diverse gut microbiome that harbored Prevotella and Akkermansia, taxa involved in starch degradation, while the purple-faced langur gut microbiome harbored Roseburia, Clostridium, and Ruminococcus, taxa involved in processing plant structural carbohydrates. Compared to related species in other locations, both Sri Lankan langurs harbored more pathogenic bacteria. These differences suggest that gray langurs have more generalist diets, making them more resilient to anthropogenic change, but also indicate that they are not impervious to human encroachment. Our findings suggest that microbiome analyses are an important tool for langur ecology and conservation, and should be integrated into ongoing studies.  相似文献   

7.
Recent molecular studies on langurs of the Indian subcontinent suggest that the widely-distributed and morphologically variable Hanuman langurs (Semnopithecus entellus) are polyphyletic with respect to Nilgiri and purple-faced langurs. To further investigate this scenario, we have analyzed additional sequences of mitochondrial cytochrome b as well as nuclear protamine P1 genes from these species. The results confirm Hanuman langur polyphyly in the mitochondrial tree and the nuclear markers suggest that the Hanuman langurs share protamine P1 alleles with Nilgiri and purple-faced langurs. We recommend provisional splitting of the so-called Hanuman langurs into three species such that the taxonomy is consistent with their evolutionary relationships.  相似文献   

8.
Recently Dela (International Journal of Primatology, 28 (2007): 607–626; International Journal of Primatology, 33 (2012): 40–72) published her study from the mid-1980s on the diet of purple-faced langurs Trachypithecus (Semnopithecus) vetulus in village gardens and rubber plantations. Unlike studies from the 1970s that reported the species, like other colobines, to be largely folivorous with few ripe fruits eaten, Dela found them to be largely frugivorous. The frequent feeding on ripe fruits challenges the paradigm that colobine digestive adaptations restrict the use of ripe fleshy fruits. No reference was made to any other post-1970s study on the species. Here I provide a concise overview of more than a dozen studies conducted in the 1990s and 2000s that show that 1) other populations live in similar human-modified environments showing feeding adaptations as reported by Dela, 2) these populations rely largely on cultivated crops and feed heavily on fruits, 3) living in these situations introduces them to additional threats. Especially in western Sri Lanka little natural habitat remains and deforestation has led the langurs to exchange the forest jungle for the urban jungle, with power lines, fences, walls, and roofs being used instead of trees. The main fruits that provide a staple for langurs in these areas are jackfruit (Artocarpus heterophyllus), banana (Musa spp.), and mango (Mangifera indica); studies in undisturbed habitats and indeed Dela’s own study suggest the heavy use of human-edible fruits by langurs may not necessarily indicate preferential selection of these food sources. Living in human-modified environments makes the langurs more prone to infection with gastrointestinal parasites, and may lead to death by electrocution or being killed by guard dogs. The large degree of agreement between studies suggest that feeding on ripe fruits from cultivars is not unique to Dela’s two study groups and shows that some langur groups are able to survive for extended periods on uncolobine-like diets when they cannot access their preferred foods.  相似文献   

9.
For many primates, sweet taste is palatable and is an indicator that the food contains carbohydrates, such as sugars and starches, as energy sources. However, we have found that Asian colobine monkeys (lutungs and langurs) have low sensitivity to various natural sugars. Sweet tastes are recognized when compounds bind to the sweet taste receptor TAS1R2/TAS1R3 in the oral cavity; accordingly, we conducted a functional assay using a heterologous expression system to evaluate the responses of Javan lutung (Trachypithecus auratus) TAS1R2/TAS1R3 to various natural sugars. We found that Javan lutung TAS1R2/TAS1R3 did not respond to natural sugars such as sucrose and maltose. We also conducted a behavioral experiment using the silvery lutung (Trachypithecus cristatus) and Hanuman langur (Semnopithecus entellus) by measuring the consumption of sugar-flavored jellies. Consistent with the functional assay results for TAS1R2/TAS1R3, these Asian colobine monkeys showed no preference for sucrose or maltose jellies. These results demonstrate that sweet taste sensitivity to natural sugars is low in Asian colobine monkeys, and this may be related to the specific feeding habits of colobine monkeys.  相似文献   

10.
In a competitive sympatric association, coexisting species may try to reduce interspecific interactions as well as competition for similar resources by several ecological and behavioral practices. We studied resource utilization of three sympatric primate species namely, lion-tailed macaques (Macaca silenus), bonnet macaques (M. radiata) and Hanuman langurs (Semnopithecus entellus) in a tropical rainforest of the central Western Ghats, south India. We studied resource use, tree-height use, foraging height, substrate use when consuming animal prey and interspecific interactions. The results revealed that across the year, there was very limited niche overlap in diet between each species-pair. Each primate species largely depended on different plant species or different plant parts and phenophases from shared plant species. Primate species used different heights for foraging, and the two macaque species searched different substrates when foraging on animal prey. We also recorded season-wise resource abundance for the resources shared by these three primate species. While there was low dietary overlap during the dry season (a period of relatively low resource abundance), there was high dietary overlap between the two macaque species during the wet season (a period of high resource abundance for the shared resources). We observed only a few interspecific interactions. None of these were agonistic, even during the period of high niche overlap. This suggests that the sympatric primate species in this region are characterized by little or no contest competition. Unlike in some other regions of the Western Ghats, the lack of interspecific feeding competition appears to allow these primates, especially the macaques, to remain sympatric year-round.  相似文献   

11.
To meet nutritional needs, primates adjust their diets in response to local habitat differences, though whether these dietary modifications translate to changes in dietary nutrient intake is unknown. A previous study of two populations of the mountain gorilla (MG: Gorilla beringei) found no evidence for intraspecific variation in the nutrient composition of their diets, despite ecological and dietary differences between sites. One potential explanation is that nutritional variability in primate diets requires greater ecological divergence than what was captured between MG sites, underpinning environmental differences in the nutrient quality of plant foods. To test whether Gorilla exhibits interspecific variation in dietary composition and nutrient intake, we studied the composition and macronutrients of the western gorilla (WG: Gorilla gorilla) staple diets and compared them with published data from the two MG populations. We recorded feeding time and food intake of four adult female WGs from one habituated group over a period of 11 months (December 2004–October 2005) at the Mondika Research Center, Republic of Congo, allowing for assessment of seasonal patterns of nutrient intake. Staple diets of WGs and MGs diverged in their dietary and macronutrient composition. Compared to MGs, the staple diet of WGs (by intake) contained higher proportions of fruit (43%) and leaf (12%) and a lower proportion of herb (39%), resulting in a higher intake of total nonstructural carbohydrate and fiber and a lower intake of crude protein. Staple gorilla fruits and herbs differed in nutrient quality between sites. Gorillas exhibit nutritional flexibility that reflects ecological variation in the nutrient quality of plant foods. Since dietary quality typically affects rates of growth and reproduction in primates, our results suggest that interspecific differences in nutrient intake and food quality may shape differences in gorilla nutrient balancing and female life history strategies.  相似文献   

12.
The present study was aimed to determine dietary composition and feeding guild structure of the fishes inhabiting mudflat habitat of Indian Sundarbans. In addition, partitioning of food resources by the fish species belonging to the carnivorous feeding guild was also performed to understand the survival strategies of fish in a mudflat estuarine habitat. Seventeen prey categories were isolated from the stomachs of 31 studied fish species. Overall, five feeding guilds (viz. plankti-benthivore: 12 species, herbivore: one species, detritivore: three species, omnivore: one species and carnivore: 14 species) were identified on the basis of the prey abundance within their stomachs, considering 64 % Bray–Curtis similarity. Among the carnivorous, maximum trophic richness was obtained for Uroconger lepturus followed by Ophichthus apicalis. Teleost and decapods were the main animal prey items preferred by majority of the carnivorous fishes. However, O. apicalis and Terapon jarbua showed their preference toward maximum number of prey categories among carnivores, which was also ratified by the high values for standardized niche breadth presented by them. The maximum degree of interspecific dietary overlap was found between Uropterygius marmoratus and Pseudapocryptes elongatus as both of them were recognized as cranci-piscivore. The lowest was observed between Hyporhamphus limbatus and Coilia neglecta. As food resources are not limiting in the mudflats of Indian Sundarbans, the general patterns of resource partitioning and niche differentiation in resident ecological communities will improve the understanding of the mechanisms underlying species coexistence and community structure.  相似文献   

13.
Tropical dry forests are characterized by punctuated seasonal precipitation patterns that drive primary production and the availability of fruits, seeds, flowers, and insects throughout the year. In environments in which the quantity and quality of food resources varies seasonally, consumers should adjust their foraging behavior to maximize energy intake while minimizing overlap with competitors during periods of low food availability. Here, we investigated how the diets of frugivorous bats in tropical dry forests of NW Mexico varied in response to seasonal availability and how this affected dietary overlap of morphologically similar species. We performed stable isotope analyses to understand temporal and interspecific patterns of overall isotopic niche breadth, trophic position, and niche overlap in the diet of six frugivorous species of closely related New World leaf-nosed bats (family Phyllostomidae, subfamily Stenodermatinae). We estimated seasonal changes in resource abundance in two complementary ways: (a) vegetative phenology based on long-term remote sensing data and (b) observational data on food availability from previously published insect and plant fruiting surveys. In all species, there was a consistent pattern of reduced isotopic niche breadth during periods of low food availability. However, patterns of niche overlap varied between morphologically similar species. Overall, results from our study and others suggest that seasonal food availability likely determines overall dietary niche breadth in Phyllostomidae and that despite morphological specialization, it is likely that other mechanisms, such as opportunistic foraging and spatiotemporal niche segregation, may play a role in maintaining coexistence rather than simply dietary displacement.  相似文献   

14.
Optimal foraging theory has only been sporadically applied to nonhuman primates. The classical prey model, modified for patch choice, predicts a sliding “profitability threshold” for dropping patch types from the diet, preference for profitable foods, dietary niche breadth reduction as encounter rates increase, and that exploitation of a patch type is unrelated to its own abundance. We present results from a 1‐year study testing these predictions with Himalayan langurs (Semnopithecus entellus) at Langtang National Park, Nepal. Behavioral data included continuous recording of feeding bouts and between‐patch travel times. Encounter rates were estimated for 55 food types, which were analyzed for crude protein, lipid, free simple sugar, and fibers. Patch types were entered into the prey model algorithm for eight seasonal time periods and differing age‐sex classes and nutritional currencies. Although the model consistently underestimated diet breadth, the majority of nonpredicted patch types represented rare foods. Profitability was positively related to annual/seasonal dietary contribution by organic matter estimates, whereas time estimates provided weaker relationships. Patch types utilized did not decrease with increasing encounter rates involving profitable foods, although low‐ranking foods available year‐round were taken predominantly when high‐ranking foods were scarce. High‐ranking foods were taken in close relation to encounter rates, while low‐ranking foods were not. The utilization of an energetic currency generally resulted in closest conformation to model predictions, and it performed best when assumptions were most closely approximated. These results suggest that even simple models from foraging theory can provide a useful framework for the study of primate feeding behavior. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
We investigated sex differences in the social behavior of immature Hanuman langurs (Presbytis entellus) in the light of sex-specifically different life-courses and Hanuman langur characteristics, such as the individualistic dominance hierarchy and the rarity of intragroup coalitions among adult females. We observed four immature female and four immature male langurs—all members of the same free-ranging multimale multifemale group in Ramnagar, South Nepal—from November 1992 to February 1993 for 288 hr via focal-animal and instantaneous sampling techniques. Immature females spent significantly more time in proximity to other group members than immature males did. They had more physical contact and groomed more. Other immature females were their preferred social partners. Immature males also preferred like-aged females. They restricted their relationships with other immature males to proximity and occasional grooming. Monitoring was directed especially toward adult males. Female behavior can be interpreted as oriented toward integration into the female social network and their age-inverted dominance hierarchy. Males seem to prepare for leaving their natal group and for future strong intrasexual competition.  相似文献   

16.
种间竞争会导致鸟类对自身的生存策略进行多方面调整,将多种因素结合起来分析不同鸟类的同域共存机制具有十分重要的意义.2009-2011年的3-7月,在辽宁省东部山区以悬挂人工巢箱的方法招引杂色山雀(Parus varius)和大山雀(Parus major),通过比较这两种鸟类在繁殖时间、繁殖参数和巢址选择上的差异,分析其繁殖期的栖息地选择及繁殖对策,探讨这两种鸟类同域共存的机制.结果表明,生态位的部分分离是大山雀和杂色山雀能够长期共存的基础.两者都是在繁殖期到来立即开始繁殖,均出现两次繁殖高峰,采用消减窝卵数的对策来适应环境质量的下降.对繁殖参数的分析表明,两种鸟类的繁殖对策都为k-选择,但大山雀略偏向r端,大山雀倾向高窝卵数、低繁殖成功率的繁殖策略;杂色山雀倾向低窝卵数、高繁殖成功率的繁殖策略.两种鸟类都选择在林龄较长的森林中筑巢,但是大山雀较注重巢址的安全性能,巢距地面较高,周围乔木密集;杂色山雀较为注重植被类型的选择,巢址多选择在植被多样、灌木生长茂盛的针阔混交林中,推测可能与杂色山雀的食物构成有关.  相似文献   

17.
The introduction of non‐native species to new locations is a growing global phenomenon with major negative effects on native species and biodiversity. Such introductions potentially bring competitors into contact leading to partial or total species replacements. This creates an opportunity to study novel species interactions as they occur, with the potential to address the strength of inter‐ and intraspecific interactions, most notably competition. Such potential has often not been realized, however, due to the difficulties inherent in detecting rapid and spatially expansive species interactions under natural field conditions. The invasive amphipod crustacean Gammarus pulex has replaced a native species, Gammarus duebeni celticus, in river and lake systems across Europe. This replacement process is at least partially driven by differential parasitism, cannibalism, and intraguild predation, but the role of interspecific competition has yet to be resolved. Here, we examine how abundance of an invasive species may affect spatial niche breadth of a native congeneric species. We base our analyses of niche breadth on ordination and factor analysis of biological community and physical parameters, respectively, constituting a summative, multidimensional approach to niche breadth along environmental gradients. Results derived from biological and environmental niche criteria were consistent, although interspecific effects were stronger using the biological niche approach. We show that the niche breadth of the native species is constrained as abundance of the invader increases, but the converse effect does not occur. We conclude that the interaction between invasive G. pulex and native G. d. celticus under natural conditions is consistent with strong interspecific competition whereby a native, weaker competitor is replaced by a superior invasive competitor. This study indicates a strong role of interspecific competition, alongside other known interactions such as differential intraguild predation, in rapid and expansive species replacements following biological invasions.  相似文献   

18.
In the Zoom Erlebniswelt Gelsenkirchen the third and last biogeographical area dedicated to the Asian fauna was opened in March 2010 covering a total area of five hectares. In May 2013 a new enclosure for tigers was added. The emphasis of the Asia area lies on a 4700 m2 tropical hall with mammals and birds, and Asian gastronomic facilities as well. Included is a mixed species exhibit for orangutans (Pongo abelii), northern plains grey langurs (Semnopithecus entellus) and Asian small clawed otters (Aonyx cinerea). Along a 1.3 km outside path enclosures for some species of colder climates were built, too. The transformation of the former Ruhr Zoo Gelsenkirchen to the modern ZOOM Erlebniswelt herewith is brought to a close.  相似文献   

19.
20.
The dietary composition, foraging strategies, and interspecific trophic interactions were identified for four major demersal carnivorous finfishes, namely, croaker Otolithes ruber, hairtail Trichiurus lepturus, threadfin bream Nemipterus japonicus, and lizardfish Saurida undosquamis, along the north-western part of Bay of Bengal from 2014 to 2016. Two species, Trichiurus lepturus and Saurida undosquamis, were identified as finfish feeders due to the high number of teleost (clupeids and engraulids) prey. One species, Nemipterus japonicus, had a significantly different diet of metapenaeids and charybdids, and was identified as a shellfish feeder. The final species, Otolithes ruber, preyed equally on crustaceans and teleosts, and was identified as a shellfish-finfish feeder. The feeding activity of all four species was lower during peak spawning periods and tended to increase with maturity. Feeding preferences varied with seasons. The trophic level ranged from 3.49 to 4.01, classifying the four species as medium-carnivores or meso-predators. Niche breadth ranged from 0.170 to 0.421, with seasonal and ontogenetic variations. Individual or subgroup specialization was observed on dominant prey, but intraspecific diet variations indicated all four species to be opportunistic predators. There was substantial prey overlap for Saurida undosquamis with Otolithes ruber and Trichiurus lepturus, which increased ontogenetically and coincided with their peak spawning. Sharing of abundant prey resources together with temporal and ontogenetic resource partitioning at intra- and interspecific levels possibly lowered dietary competition, thereby facilitating the coexistence of these demersal predators. This study provides new information on feeding interactions from a tropical demersal ecosystem that can be applied for the ecosystem-based management of trawl fisheries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号