首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ubiquitin- and proteasome-dependent proteolysis in plants   总被引:9,自引:0,他引:9  
  相似文献   

2.
At the early stages of myogenesis, myoblasts fuse to form multinucleated myotubes. This morphological differentiation is the result of dynamic changes in gene regulation and expression. The ubiquitin proteasome-dependent pathway has been reported to play an important role in many aspects of cellular functions such as regulation of growth and cell cycle progression. In this study, we showed that the amount of mRNA's corresponding to the iota subunit of the 20S proteasome, the level of the S4 subunit of the 19S complex and the 20S and 26S proteasomes peptidase activities increased during myoblast fusion. Cell permeable 20S proteasome inhibitor prevented fusion with concomitant accumulation of ubiquitin-conjugated protein. On the other hand, inhibition of ubiquitin ligase E3 enzymes prevented the formation of ubiquitin conjugate and decreased the fusion process. These results strongly support the involvement of the ubiquitin-proteasome proteolytic pathway in the events leading to myoblast fusion.  相似文献   

3.
Scoccianti  V.  Ovidi  E.  Taddei  A. R.  Tiezzi  A.  Crinelli  R.  Gentilini  L.  Speranza  A. 《Sexual plant reproduction》2003,16(3):123-133
We recently reported the involvement of the ubiquitin pathway in microgametophyte development, and a direct role for the 26S proteasome in regulating pollen tube emergence in kiwifruit. Here we show that the ubiquitin/proteasome proteolytic pathway is involved not only in early kiwifruit pollen tube organisation, but also in maintaining polarised growth of tubes. By immunofluorescence analysis we show that ubiquitin and ubiquitin-protein conjugates are distributed mainly at the apex of emerging tubes, in both untreated pollen grains and pollen grains treated with MG132, an inhibitor of proteasome function. In the latter case, polysiphonous germination occurred and all the emerging areas were highly fluorescent. By adding MG132 to pollen when normal tube growth had already been established, accumulation of ubiquitin-protein conjugates, as well as a drastic reduction in tube growth and dramatic modifications of tube tip morphology were observed. Significantly, differential interference contrast microscopy analysis demonstrated that the clear zone was largely reduced or absent, and the nuclei were disconnected in their movements, reaching, in some cases, the extreme apex of the tip. These findings provide evidence that the ubiquitin- and proteasome-dependent proteolytic system could modulate the abundance and/or activity of key regulatory proteins involved in pollen tube emergence and polarised growth.  相似文献   

4.
The ubiquitin/proteasome-dependent proteolytic pathway is an attractive target for therapeutics because of its critical involvement in cell cycle progression and antigen presentation. However, dissection of the pathway and development of modulators are hampered by the complexity of the system and the lack of easily detectable authentic substrates. We have developed a convenient reporter system by producing N-end rule and ubiquitin fusion degradation (UFD)-targeted green fluorescent proteins that allow quantification of ubiquitin/proteasome-dependent proteolysis in living cells. Accumulation of these reporters serves as an early predictor of G2/M arrest and apoptosis in cells treated with proteasome inhibitors. Comparison of reporter accumulation and cleavage of fluorogenic substrates demonstrates that the rate-limiting chymotrypsin-like activity of the proteasome can be substantially curtailed without significant effect on ubiquitin-dependent proteolysis. These reporters provide a new powerful tool for elucidation of the ubiquitin/proteasome pathway and for high throughput screening of compounds that selectively modify proteolysis in vivo.  相似文献   

5.
In higher plants, post-embryonic development is dependent on the activity of the root and shoot apical meristem (RAM and SAM). The quiescent center (QC) in the RAM and the organizing center (OC) in the SAM are known to be essential for the maintenance of meristematic activity. To understand the mechanism that maintains post-embryonic meristems, we isolated an Arabidopsis mutant, halted root (hlr). In this mutant, the cellular organization was disrupted in post-embryonic meristems both in the root and in the shoot, and their meristematic activity was reduced or became abnormal. We showed that the mutant RAM lost its QC identity after germination, which was specified during embryogenesis, whereas the identity of differentiated tissues was maintained. In the post-embryonic SAM, the expression pattern of a typical OC marker gene, WUSCHEL, was disturbed in the mutant. These observations indicate that the HLR gene is essential to maintain the cellular organization and normal nature of the RAM and SAM. The HLR gene encodes RPT2a, which is a subunit of the 26S proteasome that degrades key proteins in diverse cellular processes. We showed that the HLR gene was expressed both in the RAM and in the SAM, including in the QC and the OC, respectively, and that the activity of proteasomes were reduced in the mutant. We propose that proteasome-dependent programmed proteolysis is required to maintain the meristem integrity both in the shoot and in the root.  相似文献   

6.
The supply of -naphthaleneacetic acid (NAA), to excised chicory roots induced the formation of lateral root meristems mainly localized proximal to the pre-existing apical root meristem, in a region which does not initiate any lateral roots in control conditions. Inhibition of root elongation and concomitant enlargement of the apices were also observed. Quantification of NAA and cytokinin levels showed that the most reproducible and significant changes occurring after the NAA treatment consisted of a decrease in the level of zeatin-O-glucoside conjugates. Hydrolysis of these conjugates might deliver free zeatin-type compounds which were consumed during the lateral root growth. After 5 d, control excised roots contained a high level of amino acids, mainly as asparagine and arginine, probably issued from proteolysis associated to a senescent-like process. Conversely, in the presence of NAA, neither accumulation of amino acids nor a decrease of the total protein content of the tissue could be detected. Newly initiated meristems expressed the nia gene which encodes nitrate reductase, the first enzyme of the nitrate assimilatory pathway. Thus the increased expression of nitrate reductase which was observed in excised roots of chicory supplied with NAA (Vuylsteker et al., 1997b) may be ascribed to lateral root formation and development. The reinduction of nitrate reduction activity was driven by the increased demand for reduced nitrogen. Thus, the nia gene is one of the genes expressed during the early stages of root meristem formation.Keywords: Auxins, chicory, in situ hybridization, lateral root, nitrate reductase.   相似文献   

7.
8.
In higher plants, the root-shoot axis established during embryogenesis is extended and modified by the development of primary and lateral apical meristems. While the structure of several shoot apical meristems has been deduced by combining histological studies with clonal analysis, the application of this approach to root apical meristems has been limited by a lack of visible genetic markers. We have tested the feasibility of using a synthetic gene consisting of the maize transposable elementActivator (Ac) inserted between a 35S CaMV promoter and the coding region of a -glucuronidase (GUS) reporter gene as a means of marking cell lineages in roots. The GUS gene was activated in individual cells byAc excision, and the resulting sectors of GUS-expressing cells were detected with the histochemical stain X-Gluc. Sectors in lateral roots originated from bothAc excision in meristematic cells and from parent root sectors that bisect the founder cell population for the lateral root initial. Analysis of root tip sectors confirmed that the root cap, and root proper have separate initials. Large sectors in the body of the lateral root encompassed both cortex and vascular tissues. The number of primary initial cells predicted from the size and arrangement of the sectors observed ranged from two to four and appeared to vary between roots. We conclude that transposon-based clonal analysis using GUS expression as a genetic marker is an effective approach for deducing the functional organization of root apical meristems.  相似文献   

9.
Regulation of apoptosis by the ubiquitin and proteasome pathway   总被引:6,自引:1,他引:5  
Regulated proteolysis plays important roles in cell physiology as well as in pathological conditions. In most of the cases, regulated proteolysis is carried out by the ubiquitin- and proteasome-dependent proteolytic system, which is also in charge of the bulk of cytoplasmic proteolysis. However, apoptosis or the process of programmed cell death is regulated by a different proteolytic system, i.e . by caspases, a family of specialized cysteine proteases. Nevertheless, there is plenty of evidence of a crosstalk between the apoptotic pathways and the ubiquitin and proteasome system, whose function in apoptosis appears to be very complex. Proteasome inhibitors induce apoptosis in multiple cell types, while in other they are relatively harmless or even prevent apoptosis induced by other stimuli. Proteasomes degrade specific proteins during apoptosis, but on the other hand some components of the proteasome system are degraded by caspases. The knowledge about the involvement of the ubiquitin- and proteasome-dependent system in apoptosis is already clinically exploited, since proteasome inhibitors are being tested as experimental drugs in the treatment of cancer and other pathological conditions, where manipulation of apoptosis is desirable.  相似文献   

10.
11.
MACLEOD  R. D. 《Annals of botany》1973,37(4):687-697
The effects of colchicine and IAA treatments on mitotic activityin various root proliferating tissues have been determined.Lateral root primordia were not affected by IAA, though 24 hfollowing treatment mitotic activity was severely inhibitedin the apical meristems of 1-cm-long attached lateral rootsand primary roots. Primordia were also less sensitive to colchicinetreatment than root apical meristems. Thus telophase figureswere present in the former meristems 3 h following treatment,but not in the latter. Primordia and apical meristems respondedto the same extent, however, to the colchicine-induced increasein number of cells in metaphase, anaphase, and telophase, 3h after treatment began. The apparent difference between largeprimordia and root apical meristems in this respect was dueto the failure of colchicine to penetrate the cells of the formerproliferating tissues as rapidly as the latter. IAA was foundto prevent the increased MI found 24 h following colchicinetreatment only in those meristems where IAA inhibited mitoticactivity at this time. IAA treatments, either alone or withcolchicine, were also found to maintain mitotic activity in1-cm-long lateral roots which were excised from the primaryroots 24 h previously. In such laterals which were not treatedwith IAA, MI was zero at 24 h. It is concluded from the datareported in this paper that, during the development of rootapical meristems, changes take place in the response of cellsto factors affecting mitotic activity.  相似文献   

12.
13.
The latent membrane protein 1 (LMP1) of the Epstein-Barr virus is a constitutively active receptor essential for B lymphocyte transformation by the Epstein-Barr virus. It is a short-lived protein, but the proteolytic pathway involved in its degradation is not known. The ubiquitin pathway is a major system for specific protein degradation in eukaryotes. Most plasma membrane substrates of the pathway are internalized upon ubiquitination and delivered for degradation in the lysosome/vacuole. Here we show that LMP1 is a substrate of the ubiquitin pathway and is ubiquitinated both in vitro and in vivo. However, in contrast to other plasma membrane substrates of the ubiquitin system, it is degraded mostly by the proteasome and not by lysosomes. Degradation is independent of the single Lys residue of the protein; a lysine-less mutant LMP1 is degraded in a ubiquitin- and proteasome-dependent manner similar to the wild type protein. Degradation of both wild type and lysine-less protein is sensitive to fusion of a Myc tag to the N terminus of LMP1. In addition, deletion of as few as 12 N-terminal amino acid residues stabilizes the protein. These findings suggest that the first event in LMP1 degradation is attachment of ubiquitin to the N-terminal residue of the protein. We present evidence suggesting that phosphorylation is also required for degradation of LMP1.  相似文献   

14.
泛素/26S蛋白酶体途径与植物的生长发育   总被引:6,自引:0,他引:6  
泛素/26S蛋白酶体途径在植物蛋白降解系统中起重要作用,泛素分子主要通过泛素活化酶(E1)、泛素结合酶(E2)和泛素连接酶(E3)将靶蛋白泛素化,泛素化的蛋白最后被26S蛋白酶体识别和降解。泛素蛋白酶体途径参与植物体内的多种生理过程,如花和胚的发育、光形态建成、植物生长物质等几乎所有的生长发育过程,本文主要对泛素/26S蛋白酶体途径及其在植物生长发育过程中的精确调控作用进行综述。  相似文献   

15.
在真核细胞中已发现两条主要降解途径,即自噬系统和蛋白酶体系统.长期以来,这两条降解途径一直被认作是完全独立的路径,然而最近的证据强烈提示,这两条主要降解途径之间相互联系.其中,发现干扰这两条途径的任一条可影响另一条途径的活性,抑制蛋白酶体可刺激自噬活性.同时发现泛素的作用比先前想象更广泛,不仅具有标记蛋白酶体降解蛋白质这一 “经典作用”,还涉及自噬-溶酶体途径降解底物泛素化,是这些主要降解途径的共同标签.这些降解系统分享某些底物和调节分子,显示协同作用,在某些背景下,显示补偿功能.降解系统之间的协同和补偿作用在许多细胞过程中显得至关重要.因此这些降解系统异常或联系失常不仅导致细胞功能的异常,而且也与多种重要疾病的发生和发展密切相关.对这些降解途径功能及其联系的深入了解可拓展人们对这些降解途径的认识,有助于对多种细胞分解代谢过程的深入理解,也有助于相关新药的研发.  相似文献   

16.
17.
Muscular functions decline and muscle mass decreases during ageing. In the rat, there is a 27% decrease in muscle protein between 18 and 34 months of age. We examined age-related changes in the proteasome-dependent proteolytic pathway in rats at 4, 18, 24, 29 and 34 months of age. The three best characterised activities of the proteasome (chymotrypsin-like, trypsin-like and peptidylglutamyl peptide hydrolase) increased to 29 months and then decreased in the senescent animal. These variations in activity were accompanied by an identical change in the quantity of 20S proteasome measured by Western blot, whereas the S4 subunit of the 19S regulator and the quantity of ubiquitin-linked proteins remained constant. mRNA of subunits C3, C5, C9, and S4 increased in the senescent animal, but ubiquitin mRNA levels were unchanged. These findings suggest that the 20S proteasome may be partly responsible for the muscular atrophy observed during ageing in the rat.  相似文献   

18.
19.
Hormone interactions at the root apical meristem   总被引:1,自引:0,他引:1  
Plants exhibit an amazing developmental flexibility. Plant embryogenesis results in the establishment of a simple apical-basal axis represented by apical shoot and basal root meristems. Later, during postembryonic growth, shaping of the plant body continues by the formation and activation of numerous adjacent meristems that give rise to lateral shoot branches, leaves, flowers, or lateral roots. This developmental plasticity reflects an important feature of the plant's life strategy based on the rapid reaction to different environmental stimuli, such as temperature fluctuations, availability of nutrients, light or water and response resulting in modulation of developmental programs. Plant hormones are important endogenous factors for the integration of these environmental inputs and regulation of plant development. After a period of studies focused primarily on single hormonal pathways that enabled us to understand the hormone perception and signal transduction mechanisms, it became obvious that the developmental output mediated by a single hormonal pathway is largely modified through a whole network of interactions with other hormonal pathways. In this review, we will summarize recent knowledge on hormonal networks that regulate the development and growth of root with focus on the hormonal interactions that shape the root apical meristem.  相似文献   

20.
The ubiquitin-26S proteasome system is important in the quality control of intracellular proteins. The ubiquitin-26S proteasome system includes the E1 (ubiquitin activating), E2 (ubiquitin conjugating), and E3 (ubiquitin ligase) enzymes. U-box proteins are a derived version of RING-finger domains, which have E3 enzyme activity. Here, we present the isolation of a novel U-box protein, U-box containing E3 ligase induced by phosphate starvation (OsUPS), from rice (Oryza sativa). The cDNA encoding the O. sativa U-box protein (OsUPS) comprises 1338 bp, with an open reading frame of 445 amino acids. The amino acid sequence of OsUPS cDNA shows 41–79% identity with other plant U-box homologous genes. The open reading frame of the OsUPS protein is comprised of notable domains: a single ~70-amino acid domain and a GKL domain that contains conserved glycine, lysine/arginine residues and leucine-rich feature. We found that full-length expression of OsUPS was up-regulated in both rice plants and cell culture in the absence of inorganic phosphate (Pi). A self-ubiquitination assay indicated that the bacterially expressed OsUPS protein had E3 ligase activity, and subcellular localization results showed that OsUPS was located in the chloroplast. These results support the notion that OsUPS plays an important role in the Pi signaling pathway through the ubiquitin-26S proteasome system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号