首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reintroductions—captive-born animals introduced into the species’ original distribution area—and translocations—free-living animals transferred to another location within the historical distribution area—are important conservation strategies for endangered species. Genetic analyses of 239 individuals from unmanaged, translocated and reintroduced populations of Leontopithecus rosalia were performed using 14 microsatellites. These samples were collected during two periods: (a) 1996–1997 (historic), when individuals were translocated and reintroduced into forest fragments in the lowland Atlantic Forest, and (b) 2007–09 (recent). We hypothesized that effective population size and genetic diversity would increase over time and that these management strategies would affect the resulting population genetic structure. We found trends indicating that the effective population size at the translocation site increased while that at the reintroduction sites diminished over time. The inbreeding coefficient of the translocated population diminished over time (from 0.38 to 0.03) and was much lower than that of the native (0.29) and reintroduced (0.13) recent populations. We observed a greater genetic admixture among the reintroduced sites on the historic sampling, as well as a strong genetic structure at the translocation site. In the recent sampling, the population structuring became more site-related suggesting low or inconsistent gene flow between sampling sites. This research highlights how conservation management decisions have an important influence on the genetic outcome of translocations and reintroductions. Future conservation planning should consider population genetic monitoring before and after management measures and maintain population connectivity thereafter to avoid the negative effects of a population size reduction.  相似文献   

2.
Amorpha georgiana (Fabaceae) is an endangered legume species found in longleaf pine savannas in the Southeastern United States. Approximately 900 individuals and 14 populations remain, most of which are concentrated in North Carolina. Eleven microsatellite loci were used to explore genetic diversity, population structure and recent population bottlenecks using genotypic data from 132 individuals collected at ten different localities. Although A. georgiana is quite rare, it exhibited high levels of genetic diversity (17.7 alleles/locus; H o = 0.65, H E = 0.75). Most of the genetic variation was found within rather than between populations of this species. The single remaining Georgia population was well differentiated from populations of the Carolinas ( F ST > 0.1), which had weaker structure among them ( F ST < 0.1). Only a geographically disjunct population showed strong evidence of a recent population bottleneck, perhaps due to a recent founder event. Hybridization with A. herbacea was also detected. For conservation management plans, A. georgiana populations in each geographic region (North Carolina, South Carolina and Georgia) plus a disjunct population in North Carolina (Holly Shelter) should be treated as separate management units for which in situ conservation, including habitat restoration and use of prescribed burns, should ensure persistence of this species and preservation of its evolutionary potential.  相似文献   

3.
  • 1 Most aquatic mammals have high dispersal potential, and there are often severe conservation concerns related to their legal or illegal harvesting. Therefore, economic, social and forensic factors often arise in decisions relating to their population management. Molecular markers are essential tools in modern conservation genetics, revealing previously unknown aspects of aquatic mammal behaviour, natural history, population structure and demography. Molecular markers also have been used to define management units, to recognize taxonomic units, to conduct forensic analyses and to control illegal wildlife trade, providing valuable information for decision‐making in wildlife conservation and management.
  • 2 We review studies published in peer‐reviewed journals between 1993 and 2010, in which genetic approaches have been applied to conservation‐related issues involving natural populations of 25 species of aquatic mammals in South America. These studies cover just 34% of the 70 aquatic mammal species recorded in South America.
  • 3 Most of the studies are related to population structure, phylogeography, gene flow and dispersal movements. In addition, recent findings relate to evolutionarily significant units, management units, forensics and conservation policy.
  • 4 Finally, we look to the future and, based on numbers of studies and conservation concerns, suggest which species, geographic areas and genetic studies should be prioritized. Moreover, we discuss constraints on research and suggest collaborative works that would provide critical information towards the effective conservation and management of aquatic mammals in South America.
  相似文献   

4.
Conservation genetics is a powerful tool to assess the population structure of species and provides a framework for informing management of freshwater ecosystems. As lotic habitats become fragmented, the need to assess gene flow for species of conservation management becomes a priority. The eastern hellbender (Cryptobranchus alleganiensis alleganiensis) is a large, fully aquatic paedamorphic salamander. Many populations are experiencing declines throughout their geographic range, yet the genetic ramifications of these declines are currently unknown. To this end, we examined levels of genetic variation and genetic structure at both range-wide and drainage (hierarchical) scales. We collected 1,203 individuals from 77 rivers throughout nine states from June 2007 to August 2011. Levels of genetic diversity were relatively high among all sampling locations. We detected significant genetic structure across populations (Fst values ranged from 0.001 between rivers within a single watershed to 0.218 between states). We identified two genetically differentiated groups at the range-wide scale: 1) the Ohio River drainage and 2) the Tennessee River drainage. An analysis of molecular variance (AMOVA) based on landscape-scale sampling of basins within the Tennessee River drainage revealed the majority of genetic variation (∼94–98%) occurs within rivers. Eastern hellbenders show a strong pattern of isolation by stream distance (IBSD) at the drainage level. Understanding levels of genetic variation and differentiation at multiple spatial and biological scales will enable natural resource managers to make more informed decisions and plan effective conservation strategies for cryptic, lotic species.  相似文献   

5.
Genetic studies on the endangered African wild dog (Lycaon pictus) have primarily focused on the few remaining large and viable populations. However, investigations on the many isolated small African wild dog populations might also be informative for species management because the majority of extant populations are small and may contain genetic variability that is important for population persistence and for species conservation. Small populations are at higher risk of extinction from stochastic and deterministic demographic processes than larger populations and this is often of more immediate conservation concern than loss of genetic diversity, particularly for species that exhibit out-breeding behaviour such as long distance dispersal which may maintain gene flow. However, the genetic advantages of out-breeding behaviour may be reduced if dispersal is compromised beyond reserve borders (edge effects), further weakening the integrity of small populations. Mitochondrial DNA and 11 microsatellite genetic markers were used to investigate population genetic structure in a small population of out-breeding African wild dogs in Zambia, which occupies an historical dispersal corridor for the species. Results indicated the Zambian population suffered from low allelic richness, and there was significant evidence of a recent population bottleneck. Concurrent ecological data suggests these results were due to habitat fragmentation and restricted dispersal which compromised natural out-breeding mechanisms. This study recommends conservation priorities and management units for the African wild dog that focus on conserving remaining levels of genetic diversity, which may also be applicable for a range of out-breeding species.  相似文献   

6.
Eleven polymorphic microsatellite loci were used to assess genetic variation in the ferruginous pygmy owl (Glaucidium brasilianum) from North America. Analysis of genotypic variation suggests restricted gene flow between pygmy-owl populations in Arizona-Sonora and Sinaloa, and Texas and the remaining states in Mexico. The Arizona-Sonora population showed signs of a recent genetic bottleneck, an observation supported by low population estimates for Arizona (13–117 individuals). Heterozygosity in Arizona, however, was equal to levels recorded throughout Mexico and Texas. Congruent patterns revealed by nuclear (microsatellites) and mitochondrial DNA that indicate Arizona-Sonora and Texas populations are distinct from adjacent populations in Mexico, thus emphasizing need for the design and implementation of separate management plans for recovery and conservation efforts. Revealing evidence of distinct groups within the pygmy-owl populations in North America, results from this study may be used to make management decisions for the recovery and conservation of this species.  相似文献   

7.
The Przewalski’s gazelle (Procapra przewalskii) is one of the most endangered antelope species in the world. It is endemic to China and is a flagship species in the eastern part of the Qinghai–Tibet plateau. To establish effective conservation measures on this species, genetic information such as genetic structure is needed. However, there has not been a comprehensive genetic assessment on this gazelle using nuclear DNA markers yet. Here, we employed 13 microsatellite loci to investigate genetic diversity, population genetic structure and demographic history of Przewalski’s gazelle using noninvasive samples of 169 wild gazelles collected from nine populations. A total of 76 alleles were detected from the entire samples, mean allele number was 5.85, and overall H O and H E were 0.525 and 0.552, respectively. Structure and GENELAND analyses found six genetic groups in the nine populations. Between the inferred genetic groups, significant genetic differentiation and low migration rates were detected. Demographic analyses indicated that Przewalski’s gazelle experienced genetic bottleneck and severe population decline, with the ancestral effective population size reducing to less than one percent. Based on the results of this study, we provide several conservation recommendations for Przewalski’s gazelle, such as six management units, periodic monitoring and special conservation consideration on the Qiejitan population.  相似文献   

8.
Appropriate management of species of conservation concern requires designing strategies that should include genetic information as small population size and restricted geographic range can reduce genetic variation. We used AFLPs to investigate genetic variation within and among populations of the endangered narrow endemic Centaurea borjae, and found no evidence for genetic impoverishment despite its <40 km range and potential for vegetative propagation. Genetic variation was comparable to other plants with similar life history (88 % occurring within populations) and potential clone mates were less frequent than expected. Nonetheless, populations separated by few hundred meters showed signs of significant genetic differentiation suggesting low gene flow between them. Our results suggested that the three geographically closer populations located at the center of the range might be treated as a single management unit, while the remaining ones could be considered independent units. We found evidence of fine-scale spatial genetic structure up to 80 m indicating that the collection of germplasm for ex-situ conservation should focus on individuals separated >80 m to maximize genetic variation.  相似文献   

9.
Considered to have a declining world population, concern has been expressed in recent years over the conservation status of the White-bellied Sea-Eagle Haliaeetus leucogaster (Gmelin, 1788) within Australia. We used mitochondrial (mtDNA) control region sequence data to investigate the current distribution of genetic variation in this species at the continental level and within and between specified regional units. We were specifically interested in identifying breaks in genetic connectivity between the west and east of the continent and between Tasmania and the Australian mainland. We also investigated the likelihood of a bottleneck at the time of colonisation, and propose hypotheses regarding colonisation history. Sequence data were obtained from 128 individuals describing 15 haplotypes. Overall, diversity was low and AMOVA results failed to provide any significant level of genetic subdivision between regions. We suggest that the population expanded from a bottleneck approximately 160,000 years ago during the late Pleistocene, and spread throughout the continent through a contiguous range expansion. There is insufficient evidence to suggest division of the population into different units for conservation management purposes based on the theoretical definition of the ‘evolutionary significant unit’. It is clear from the analysis that there are signatures of both historical and contemporary processes affecting the current distribution. Additional sampling and confirmation of the perceived pattern of population structure using a nuclear marker is recommended to validate conservation monitoring and management at a continental scale.  相似文献   

10.
Habitat destruction has been identified as one of the main threats to biodiversity. Among all factors causing habitat disturbance, wildfire is recognized as one of the most important ecological forces that influences not only the physical environment, but also the structure and composition of floral and faunal communities. These processes are often translated in population bottlenecks, which occur frequently in threatened species and result in loss of genetic diversity and evolutionary potential. In this study, we analyzed the genetic consequences of a demographic bottleneck produced by a forest fire that reduced the population of the endangered blue chaffinch (Fringilla teydea polatzeki), which inhabits the island of Gran Canaria, to approximately 122 individuals. Analysis of nine microsatellite loci revealed that, while a decline in census was observed during the bottleneck, there was no observed excess of heterozygosity or evidence of a decline in allelic richness, two characteristic bottleneck signatures. On the contrary, we observed that the Gran Canaria blue chaffinch has retained significant levels of genetic diversity and shows no evidence of an increased level of inbreeding (FIS) either before or after the bottleneck. The results from this study have important implications for the conservation of this endangered subspecies and provide insights concerning management strategies to prevent its extinction.  相似文献   

11.
Studying rare and sensitive species is a challenge in conservation biology. The problem is exemplified by the case of the imperiled delta smelt Hypomesus transpacificus, a small delicate fish species endemic to the San Francisco Estuary, California. Persistent record-low levels of abundance and relatively high sensitivity to handling stress pose considerable challenges to studying delta smelt in the wild. To attempt to overcome these and other challenges we have developed the SmeltCam, an underwater video camera codend for trawled nets. The SmeltCam functions as an open-ended codend that automatically collects information on the number and species of fishes that pass freely through a trawled net without handling. We applied the SmeltCam to study the fine-scale distribution of juvenile delta smelt in the water column in the upper San Francisco Estuary. We learned that during flood tides delta smelt were relatively abundant throughout the water column and that during ebb tides delta smelt were significantly less abundant and occurred only in the lower half and sides of the water column. The results suggest that delta smelt manipulate their position in the water column to facilitate retention in favorable habitats. With the application of the SmeltCam we increased the survival of individual delta smelt by 72% compared to using a traditional codend, where all of the fish would have likely died due to handling stress. The SmeltCam improves upon similar previously developed silhouette photography or video recording devices and demonstrates how new technology can be developed to address important questions in conservation biology as well as lessen the negative effects associated with traditional sampling methods on imperiled species.  相似文献   

12.
Understanding the population structure and evolutionary history of the eastern Pacific seahorse Hippocampus ingens is critical for the effective management of this threatened species. Life history characteristics of H. ingens (site fidelity and brooding of young) may limit gene flow and lead to population differentiation. A recent study analyzing conserved fragments of the mitochondrial cyt b and control region found no population structure. We re-assess this conclusion with a phylogeographic analysis of relationships among 115 individuals of H. ingens over a broader geographic range (San Diego Bay in California, Gulf of California, Central America, Ecuador, and Peru) based on a more variable 428 base pair fragment of the control region. This expanded analysis affirms low overall nucleotide diversity relative to other seahorses (θπ = 0.004), and shows evidence of a recent bottleneck and population expansion since the middle Pleistocene. AMOVA analysis shows moderate overall population structure (ΦST = 0.10, P val = 0.00), and pairwise ΦST estimates indicate structure between the Gulf of California and all Pacific coast localities. Knowledge of population structure in H. ingens may improve conservation efforts by identifying evolutionarily important management units, and could determine source regions in the continuing trade of seahorses for traditional Chinese medicine. The level of genetic divergence observed between the Gulf of California and all other localities sampled may distinguish the Gulf as a separate management unit. Additional phylogeographic research with more quickly evolving genetic markers and targeted sampling at the mouth of the Gulf of California is warranted to inform strategies for conservation of this threatened seahorse.  相似文献   

13.
Anadromous Atlantic salmon (Salmo salar) is a species of major conservation and management concern in North America, where population abundance has been declining over the past 30 years. Effective conservation actions require the delineation of conservation units to appropriately reflect the spatial scale of intraspecific variation and local adaptation. Towards this goal, we used the most comprehensive genetic and genomic database for Atlantic salmon to date, covering the entire North American range of the species. The database included microsatellite data from 9142 individuals from 149 sampling locations and data from a medium‐density SNP array providing genotypes for >3000 SNPs for 50 sampling locations. We used neutral and putatively selected loci to integrate adaptive information in the definition of conservation units. Bayesian clustering with the microsatellite data set and with neutral SNPs identified regional groupings largely consistent with previously published regional assessments. The use of outlier SNPs did not result in major differences in the regional groupings, suggesting that neutral markers can reflect the geographic scale of local adaptation despite not being under selection. We also performed assignment tests to compare power obtained from microsatellites, neutral SNPs and outlier SNPs. Using SNP data substantially improved power compared to microsatellites, and an assignment success of 97% to the population of origin and of 100% to the region of origin was achieved when all SNP loci were used. Using outlier SNPs only resulted in minor improvements to assignment success to the population of origin but improved regional assignment. We discuss the implications of these new genetic resources for the conservation and management of Atlantic salmon in North America.  相似文献   

14.
Traditional population genetic analyses typically seek to characterize the genetic substructure caused by the nonrandom distribution of individuals. However, the genetic structuring of adult populations often does not remain constant over time, and may vary relative to season or life-history stages. Estimates of genetic structure may be biased if samples are collected at a single point in time, and will reflect the social organization of the species at the time the samples were collected. The complex population structures exhibited by many migratory species, where temporal shifts in social organization correspond to a large-scale shift in geographic distribution, serve as examples of the importance that time of sampling can have on estimates of genetic structure. However, it is often fine-scale genetic structure that is crucial for defining practical units for conservation and management and it is at this scale that distributional shifts of organisms relative to the timing of sampling may have a profound yet unrecognized impact on our ability to interpret genetic data. In this study, we used the wild turkey to investigate the effects of sampling regime on estimates of genetic structure at local scales. Using mitochondrial sequence data, nuclear microsatellite data and allozyme data, we found significant genetic structuring among localized winter flocks of wild turkeys. Conversely, we found no evidence for genetic structure among sampling locations during the spring, when wild turkeys exist in mixed assemblages of genetically differentiated winter flocks. If the lack of detectable genetic structure among individuals is due to an admixture of social units as in the case of wild turkeys during the spring, then the F IS value rather than the F ST value may be the more informative statistic in regard to the levels of genetic structure among population subunits.  相似文献   

15.
A captive breeding programme was developed in 2008 for delta smelt Hypomesus transpacificus in reaction to dramatic population decline over several decades. We took 526 sub-adult captive-reared delta smelt and cultured them for 200 days without providing artificial food or water quality management to assess their performance once released in the wild. The results indicated captive-reared sub-adult delta smelt could survive in a semi-natural environment with uncontrolled water quality and naturally produced wild prey through spawning and into their post spawning phase.  相似文献   

16.
In dispersive species with continuous distributions, genetic differentiation between local populations is often absent or subtle and thus difficult to detect. To incorporate such subtle differentiation into management plans, it may be essential to analyse many samples from many localities using adequate numbers of high‐resolution genetic markers. Here, we evaluated the usefulness of dense locality sampling in resolving genetic population structure in the ayu (Plecoglossus altivelis), a dispersive fish important in Japanese inland fisheries. Genetic variability in, and differentiation between, ayu populations around the Japan–Ryukyu Archipelago were investigated in 4746 individuals collected from 120 localities by genotyping 12 microsatellite markers. These individuals represented the two subspecies of ayu, namely the Ryukyuan subspecies (Plecoglossus altivelis ryukyuensis) and both amphidromous and landlocked forms of the nominotypical subspecies (P. a. altivelis) along the archipelago. We successfully detected an absence of genetic differentiation within the landlocked form and subtle but significant differentiation and clear geographic patterns of genetic variation among populations of the amphidromous form, which had been considered genetically homogeneous. This suggests that dense locality sampling effectively resolves subtle differences in genetic population structure, reducing stochastic deviation in the detection of genetic differentiation and geographic patterns in local populations of this dispersive species. Resampling analyses based on empirical data sets clearly demonstrate the effectiveness of increasing the number of locality samples for stable and reliable estimations of genetic fixation indices. The genetic population structure observed within the amphidromous form provides useful information for identifying management or conservation units in ayu.  相似文献   

17.
The small brown planthopper (SBPH), Laodelphax striatellus (Fallén) (Hemiptera: Delphacidae), is an important agricultural pest that has caused serious economic losses in the major rice-producing areas of China. To effectively manage this insect pest, we analysed its genetic variation, genetic structure and population demographic history. We used nine nuclear microsatellite loci to investigate the genetic diversity and population genetic structure of SBPH at 43 sampling sites in China. High levels of genetic diversity and genetic differentiation among most populations were detected. Overall, neighbour-joining dendrograms, STRUCTURE and principal coordinate analysis (PCoA) revealed no genetically distinct groups and exhibited an admixed phylogeographic structure in China. Isolation by distance (IBD) and spatial autocorrelation analyses demonstrated no correlation between genetic distance and geographic distance. On the other hand, bottleneck analysis indicated that SBPH populations had not undergone severe bottleneck effects in these regions. This study provides useful data for resolving the genetic relationships and migration patterns of SBPH and thus contributes to developing effective management strategies for this pest.  相似文献   

18.
Human activities in the past few hundred years have caused enormous impacts on many ecosystems, greatly accelerating the rate of population decline and extinction. In addition to habitat alteration and destruction, the loss of genetic diversity due to reduced population size has become a major conservation issue for many imperiled species. However, the genetic effects of persistent population bottlenecks can be very different for long-lived and short-lived species when considering the time scale of centuries. To investigate the genetic effects of persistent population bottlenecks on long-lived species, we use microsatellite markers to assess the level of genetic diversity of a small ornate box turtle population that has experienced a persistent bottleneck in the past century, and compare it to a large relatively undisturbed population. The genetic signature of a recent bottleneck is detected by examining the deviation from mutation-drift equilibrium in the small population, but the bottleneck had little effect on its level of genetic diversity. Computer simulations combined with information on population structure suggest that an effective population size of 300, which results in a census population size of 700, would be required for the small population to maintain 90% of the average number of alleles per locus in the next 200 years. The life history of long-lived species could mask the accelerated rate of genetic drift, making population recovery a relatively slow process. Statistical analysis of genetic data and empirical-based computer simulations can be important tools to facilitate conservation planning.  相似文献   

19.
Guidelines designed to aid in the restoration of rare species have been previously proposed using two primary strategies to select individuals for augmentation and reintroduction: mixing progeny from different populations or separating individuals from different populations. Understanding the genetic structure and diversity of an endangered species can offer insights into conservation management strategies. We used random amplified polymorphic DNA markers to assess the genetic structure and diversity of Jacquemontia reclinata , a federally endangered species endemic to Southeastern Florida. We sampled 20 percent of total number of individuals from eight of the ten known wild populations. Across individuals high levels of polymorphic loci (94.7%) were found and larger populations had greater genetic diversity. Cluster and ordination analyses found that one population was genetically differentiated from all the others; this population grows in a unique habitat. Most genetic variation (77.5%) was found within populations, and genetic distances between populations were not explained by their geographic distances. We recommend the use of two management units in restoration programs for J. reclinata , one consisting of the genetically differentiated population and the second consisting of the other seven populations sampled.  相似文献   

20.
Freshwater pearl mussels (Margartifera margaritifera L.) are among the most critically threatened freshwater bivalves worldwide. The pearl mussel simultaneously fulfils criteria of indicator, flagship, keystone and umbrella species and can thus be considered an ideal target species for the process conservation of aquatic ecosystem functioning. The development of conservation strategies for freshwater pearl mussels and for other bivalve species faces many challenges, including the selection of priority populations for conservation and strategic decisions on habitat restoration and/or captive breeding. This article summarises the current information about the species’ systematics and phylogeny, its distribution and status as well as about its life history strategy and genetic population structure. Based on this information, integrative conservation strategies for freshwater mollusc species which combine genetic and ecological information are discussed. Holistic conservation strategies for pearl mussels require the integration of Conservation Genetics and Conservation Ecology actions at various spatial scales, from the individual and population level to global biodiversity conservation strategies. The availability of high resolution genetic markers for the species and the knowledge of the critical stages in the life cycle, particularly of the most sensitive post-parasitic phase, are important prerequisites for conservation. Effective adaptive conservation management also requires an evaluation of previous actions and management decisions. As with other freshwater bivalves, an integrative conservation approach that identifies and sustains ecological processes and evolutionary lineages is urgently needed to protect and manage freshwater pearl mussel diversity. Such research is important for the conservation of free-living populations, as well as for artificial culturing and breeding techniques, which have recently been or which are currently being established for freshwater pearl mussels in several countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号