首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anticancer properties of two new fluorescent platinum(II) compounds, cis-[Pt(A9opy)Cl2] and cis-[Pt(A9pyp)(dmso)Cl2] are described. These compounds are highly active against several human tumor cell lines, including human ovarian carcinoma sensitive and cisplatin-resistant cell lines (A2780 and A2780R). To study the cellular processing of these new compounds, a series of in vitro studies have been performed, including the investigation of intracellular platinum accumulation and DNA-platination experiments in A2780 and A2780R cells. Compared to cisplatin, both compounds are accumulated highly in both sensitive and resistant cell lines, and more platinum has been found to bind to the nuclear DNA. Interestingly, cis-[Pt(A9opy)Cl2] shows high accumulation and DNA adduct formation in the resistant cell line A2780R, as compared to the sensitive counterpart A2780 cell line. This suggests that cis-[Pt(A9opy)Cl2] is able to overcome some of the well-known resistance mechanisms in this cell line, such as decreased cellular uptake and increased DNA repair.  相似文献   

2.
The complexes dichloro[2-(phenylselanyl)ethanamine]platinum(II), dichloro[2-(benzylselanyl)ethanamine]platinum(II) and dichloro(O-methylselenomethionine)platinum(II) have been prepared and the structure of dichloro(O-methylselenomethionine)platinum(II) has been determined by single crystal X-ray diffraction. The Pt(II) is in a square planar environment and is coordinated by two cis chloride ligands and a chelating O-methylselenomethionine ligand. The cytotoxicities of the compounds have been assessed in the human cell lines HeLa and K562 and they are at least threefold less toxic than cisplatin in both cell lines.  相似文献   

3.
trans-Diaminedicholoroplatinum(II) complexes with one planar and one non-planar heterocyclic amine ligand were designed as new potential antitumor drugs. The X-ray crystallographic structures of trans-[PtCl2(4-picoline)(piperidine)] and trans-[PtCl2(4-picoline)(piperazine)]·HCl revealed that the piperidine and piperazine ligands bind to the platinum through the equatorial position and that the ligands adopt the chair conformation. The nonplatinated amine of the piperazine can form hydrogen bonds with atoms that are approximately 7.5 Å away from the Pt binding site. DNA is considered a major pharmacological target of platinum compounds. Hence, to expand the database correlating structural features of platinum compounds and DNA distortions induced by these compounds, which may facilitate identification of more effective anticancer platinum drugs, we describe the DNA binding mode in a cell-free medium of trans-[PtCl2(4-picoline)(piperidine)] and trans-[PtCl2(4-picoline)(piperazine)]·HCl. Interestingly, the overall impact of the replacement of the second ammine group in transplatin by the heterocyclic ligands appears to change the character of the global conformational changes induced in DNA towards that induced by cisplatin. The clinical ineffectiveness of the parent transplatin has been proposed to be also associated with its reduced capability to form bifunctional adducts in double-helical DNA. The results of the present work support the view that replacement of both ammine groups of transplatin by heterocyclic ligands enhances cytotoxicity probably due to the marked enhancement of the stability of intrastrand cross-links in double-helical DNA.  相似文献   

4.
The products obtained from the reaction of Pt(IV)Cl4(LL) compounds (LL denotes the chelating ligands ethylenediamine (en) and 2,2-dimethyl-1,3-diaminopropane (dmdap), or two cis- or trans-coordinated ammines) with 9-methylhypoxanthine (mHyp) at high temperature (80°C) have been characterized by proton NMR spectroscopy. It appeared that both platinum(II) and platinum(IV) adducts were present in the reaction mixtures. After cation-exchange chromatography, the Pt(II) compound could be characterized as Pt(II)(LL)(mHyp)2, whereas the Pt(TV) fractions appeared to contain mainly one or two adducts for the chelating diamine compound but more adducts for the ammine compounds. A 3J(195Pt-1H) coupling was observed for the Pt(IV), but not for the Pt(II) compounds at the used spectrometer frequency. This supplies a useful tool to discriminate between these two types of platinum adducts.  相似文献   

5.
A series of platinum(II) complexes with 6,8-dimethylimidazo[1,5-a]-1,3,5-triazin-4(3H)-one (6,8-DiMe-4-O-IMT) (I) and 6,8-dimethyl-2-thioxo-2,3-dihydroimidazo[1,5-a]-1,3,5-triazin-4(1H)-one (6,8-DiMe-4-O-2-S-IMT) (II) of formula trans-[PtCl2(dmso)(6,8-DiMe-4-O-IMT)] (1a) and trans-[PtCl2(dmso)(6,8-DiMe-4-O-2-S-IMT)] (2a) have been prepared and characterized with 1H, 13C, 15N, 195Pt NMR and IR. Significant 15N NMR upfield coordination shifts (81-96 ppm) of N(7) atom indicate this nitrogen atom as a coordination site. The multinuclear NMR and IR spectra indicate the square planar geometry with N(7) bonded heterocycles, S-bonded dimethylsulfoxide and two trans chloride anions. The platinum(II) complexes were tested for their antiproliferative activity in vitro against the cells of four human cell lines: SW707 rectal adenocarcinoma, A549 non-small cell lung carcinoma, T47D breast cancer and HCV29T bladder cancer. The activity of (1a, 2a) was lower than that of cisplatin.  相似文献   

6.
Transplatinum planaramine complexes with carboxylate ligands as leaving groups, trans-[Pt(O2CR)2(L)(L′)] (L = L′ = pyridine; L = NH3, L′ = pyridine, isoquinoline, thiazole, quinoline, etc.), are potential anticancer complexes with cytotoxicity in some cases equivalent to that of cisplatin. The carboxylate complexes are, as a family, very water-soluble and surprisingly stable towards hydrolysis - resembling carboplatin in their reactivity. Their pharmacological properties can be systematically modified by steric and electronic effects of the donor groups as well as in the leaving carboxylate ligands. Previously, we have recognized the leaving group formate as having appropriate kinetics for bioligand substitution [1]. In this paper we directly compared the effect on biological properties of a pyridine versus isoquinoline-based carrier group. Binding to calf thymus DNA was similar for both compounds but the distortions produced on DNA, as assessed by Tm (melting temperature) and an ethidium bromide fluorescence reporter assay, were more marked for the isoquinoline ligand. Model studies with 5′-GMP (5′-guanosinemonophosphate) confirmed these trends, with the product trans-[Pt(5′-GMP)2(NH3)(isoquinoline)] showing evidence of restricted rotation caused by steric hinderance of three rigid planar rings on the central platinum. A cross-linking assay on pUC19 plasmid confirmed a higher % of interstrand adducts for the isoquinoline compound. This “enhanced” reactivity was matched by higher cytotoxicity in HCT116 human colon tumor cells, and also with enhanced cellular accumulation. Thus, a combination of systematic biophysical and biological studies indicates that trans-[Pt(O2CH)2(NH3)(isoquinoline)] has the most promising range of chemical and biological properties for further development and examination.  相似文献   

7.
Four dipeptide complexes of the type [PtX(2)(dipeptide)] x H(2)O (X=Cl, I, dipeptide=l-methionylglycine, l-methionyl-l-leucine) were prepared. The complexes were characterized by (1)H, (13)C, (195)Pt NMR and infrared spectroscopy, DTG and elemental analysis. From the infrared, (1)H and (13)C NMR spectroscopy it was concluded that dipeptides coordinate bidentately via sulfur and amine nitrogen donor atoms. Confirmed with (13)C and (195)Pt NMR spectroscopy, each of the complexes exists in two diastereoisomeric forms, which are related by inversion of configuration at the sulfur atom. The (1)H NMR spectrum for the platinum(II) complex with l-methionylglycine and chloro ligands exhibited reversible, intramolecular inversion of configuration at the S atom; DeltaG( not equal)=72 kJ mol(-1) at coalescence temperature 349 K was calculated. In vitro cytotoxicity studies using the human tumor cell lines liposarcoma, lung carcinoma A549 and melanoma 518A2 revealed considerable activity of the platinum(II) complex with l-methionylglycine and chloro ligands. Further in vitro cytotoxic evaluation using human testicular germ cell tumor cell lines 1411HP and H12.1 and colon carcinoma cell line DLD-1 showed moderate cytotoxic activity for all platinum(II) complexes only in the cisplatin-sensitive cell line H12.1. Platinum uptake studies using atomic absorption spectroscopy indicated no relationship between uptake and activity. Potential antitumoral activity of this class of platinum(II) complexes is dependent on the kind of ligands as well as on tumor cell type.  相似文献   

8.
The preparation of platinum(II) complexes derived from 3,5-diacetyl-1,2,4-triazol bis(4-phenylthiosemicarbazone) (H(5)L(1)), 3,5-diacetyl-1,2,4-triazol bis(thiosemicarbazone) (H(7)L(2)), 3,5-diacetyl-1,2,4-triazol bis(4-methylthiosemicarbazone) (H(5)L(3)) and 3,5-diacetyl-1,2,4-triazol bis(4-ethylthiosemicarbazone) (H(5)L(3)) is described. The new complexes [Pt(mu-H(3)L(1))](2), [Pt(mu-H(5)L(2))](2), [Pt(mu-H(3)L(3))](2) and [Pt(mu-H(3)L(4))](2) have been characterized by elemental analyses, fast atom bombardment mass spectrometry (FAB(+)) and spectroscopic studies. The crystal and molecular structure of compounds [Pt(mu-H(3)L(1))](2), parent ligand H(5)L(1) and [Pt(mu-H(3)L(3))](2) have been determined by single crystal X-ray diffraction. The ligands coordinate, in a dideprotonate form to the platinum ions in a new tridentate fashion (NNS) and S-brigding bonding modes. Thus the molecular units of the platinum complexes are stacked as dimers. The testing of the cytotoxic activity of the synthesized compounds together with their palladium analogues against human A2780 and A2780cisR epithelial ovarian carcinoma cells lines suggests that the compounds may be endowed with important antitumor properties since they show IC(50) values in a micromolar range similar to those of cisplatin. The structure and antitumor activity relationships of platinum and palladium complexes are also discussed.  相似文献   

9.
Two chelating ligands based on secondary amines have been selected to prepare four new Pt(II) compounds. The ligands bis(pyridine-2-yl)amine, abbreviated dpa, and bis(pyrimidine-2-yl)amine, abbreviated dipm, are chosen to design a rigid chelating motif to allow the study of subtle differences in electronic properties and hydrogen bonding ability. Different carrier ligands (i.e. chloride and ammine) have also been introduced to allow a study of structure–activity relationships. Two of the four compounds are cisplatin analogues, whereas the other two are cationic and coordinatively saturated compounds. The four synthesized and characterized compounds are [Pt(dpa)Cl2], [Pt(dpa)(NH3)2](NO3)2, [Pt(dipm)Cl2] and [Pt(dipm)(NH3)2](NO3)2 with code numbers C1C4. The spatial structures of all these compounds have also been optimized using DFT (density functional theory) calculations. The cytotoxicity of these compounds has been investigated in seven human tumor cell lines using the SRB (sulforhodamine B) assay. The most promising antitumor active compound appears to be C3, [Pt(dipm)Cl2]. Two water-soluble compounds, C2 and C4 exhibit selective activity in EVSA-T cell line. In addition, the reaction of the cisplatin analogues with the model base 9-ethylguanine has been followed by proton and platinum NMR spectroscopy.  相似文献   

10.
Pt(II) and Pd(II) compounds containing the free radical 4-aminoTEMPO (4amTEMPO) were synthesized and characterised by X-ray diffraction methods. The disubstituted complexes cis- and trans-Pt(4amTEMPO)2I2 were studied. The trans isomer was prepared from the isomerisation of the cis analogue. The two Pd(II) compounds trans-Pd(4amTEMPO)2X2 (X = Cl and I) were also characterised by crystallographic methods. A mixed-ligand complex cis-Pt(DMSO)(4amTEMPO)Cl2 was synthesized from the isomerisation of the trans isomer in hot water. Its crystal structure was also determined. In all the complexes, the 4amTEMPO ligand is bonded to the metal through the -NH2 group, since the nitroxide O atom is not a good donor atom for the soft Pt(II) and Pd(II) metals. The conformation of the 4-aminoTEMPO ligand was compared to those of the few reported structures in the literature.  相似文献   

11.
The cationic complexes (1,2-diaminoethane)(maltolato)platinum(II) ([Pt(en)(ma)]+) and (1R,2R-1,2-diaminocyclohexane)(maltolato)platinum(II) ([Pt(R,R-DACH)(ma)]+) have been prepared and the structure of [Pt(R,R-DACH)(ma)]NO3 has been determined by single crystal X-ray diffraction. The geometry of the metal in [Pt(R,R-DACH)(ma)]NO3 is essentially square planar and the maltolate ligand has a geometry similar to other chelate complexes involving this ligand. The cytotoxicities of the compounds have been assessed in the human cell lines HeLa and K562 and the IC50 values are approximately 32 microM in HeLa cells and 26 microM in K562 cells. In these cell lines the cytotoxicity of cisplatin is higher than the maltolate complexes by a factor of 2 to 3 whereas the cytotoxicity of carboplatin is lower than the maltolate complexes.  相似文献   

12.
The novel steroidal carrier ligand 17-α-[4′-ethynyl-dimethylbenzylamine]-17-β-testosterone (ET-dmba 1) and the steroid — C,N-chelate platinum(II) derivatives [Pt(ET-dmba)Cl(L)] (L = DMSO (2) and PTA (3; PTA = 1,3,5-triaza-7-phosphaadamantane)) have been prepared. Values of IC50 were calculated for the new platinum complexes 2 and 3 against a panel of human tumor cell lines representative of ovarian (A2780 and A2780cisR) and breast cancers (T47D). At 48 h incubation time complexes 2 and 3 show very low resistance factors (RF of < 2) against an A2780 cell line which has acquired resistant to cisplatin and were more active than cisplatin (about 4-fold for 3) in T47D (AR+, AR = androgen receptor). Compound 1 retains a moderate degree of relative binding affinity (RBA = 0.94%) for androgen receptors. The cytotoxicity of the non steroidal platinum analogues [Pt(dmba)Cl(L)] (dmba = dimethylbenzylamine; L = DMSO (4) and PTA (5)) has also been studied for comparison purposes. Theoretical calculations at the BP86/def2-TZVP level of theory on complex 3 have been undertaken.  相似文献   

13.
A series of new ionic Pt(II) complexes of general formula [Pt(II)(A)n(Cl)(AO)]X (A=en, NH3; n=1, 2; X-=BF4-, NO3-, PF6-, CF3SO3-), 1-5, containing Acridine Orange (AO) bound to the metal atom through the endocyclic N atom, have been tested in human melanoma cells (M14, JR8 and PLF2), human neuroblastoma cell line SH-SY5Y and its cis-platin resistant subline SH-SY5Yres. The Pt(II) compounds, and in particular complexes 1 and 4, exhibit higher cytotoxic activity at lower concentration compared to cis-DDP in melanoma cells, affecting cell growth behavior and causing cell cycle perturbation. Moreover, M14 and JR8 cell lines were not able to rescue the impairment due to the new Pt(II) complexes since perturbation of cell cycle phases and cell proliferation inhibition were found after 72 h of recovery time. In order to evaluate whether GSTP1 may play a role in chemo-resistance of our melanoma model, we investigated the effect of the treatment with these Pt(II) compounds on GSTP1 gene expression. Up-regulation of GSTP1, evaluated by Qreal-time PCR was observed after treatment with complexes 1 and 4, showing that the effect of these Pt(II) compounds is GSTP1 indipendent. The lack of resistance of the new Pt(II)-AO complexes and their cytotoxicity, cell growth and cell cycle recovery in melanoma cells provide the basis for the development of new platinum anticancer compounds, directed to those tumors that over express GSTs enzymes.  相似文献   

14.
Five oxaliplatin-typed platinum complexes containing trans-1R, 2R-diaminocyclohexane chelating platinum cores, characteristic of linear or branched alkoxycarboxylates as leaving groups, were biologically evaluated. These compounds showed higher antitumor activity, lower toxicity in vivo than cisplatin or oxaliplatin. And the results revealed that the antitumor activity and interaction with DNA of these compounds were highly related to the nature of leaving groups. Among these complexes, 5a, cis-(trans-1R, 2R-diaminocyclohexane) bis (2-tert-butoxyacetate) platinum(II), showed the highest antitumor activity and the lowest toxicity.  相似文献   

15.
A bulky platinum triamine complex, [Pt(Me5dien)(NO3)]NO3 (Me5dien = N,N,N′,N′,N′′-pentamethyldiethylenetriamine) has been prepared and reacted in D2O with N-acetylmethionine (N-AcMet) and guanosine 5′-monophosphate (5′-GMP); the reactions have been studied using 1H NMR spectroscopy. Reaction with 5′-GMP leads to two rotamers of [Pt(Me5dien)(5′-GMP-N7)]+. Reaction with N-AcMet leads to formation of [Pt(Me5dien)(N-AcMet-S)]+. When a sample with equimolar mixtures of [Pt(Me5dien)(D2O)]2+, 5′-GMP, and N-AcMet was prepared, [Pt(Me5dien)(5′-GMP-N7)]+ was the dominant product observed throughout the reaction. This selectivity is the opposite of that observed for a similar reaction of [Pt(dien)(D2O)]2+ with 5′-GMP and N-AcMet. To our knowledge, this is the first report of a platinum(II) triamine complex that reacts substantially faster with 5′-GMP than with N-AcMet; the effect is most likely due to steric clashes between the methyl groups of the Me5dien ligand and the N-AcMet.  相似文献   

16.
Twenty-six new hydrophilic chiral 2-alkoxy-1,4-butanediamine platinum (II) complexes having a seven-membered ring structure between a bidentate carrier ligand and a platinum atom have been synthesized and most of them were evaluated for their in vitro cytotoxicity toward A549 human non-small cell lung carcinoma and HCT-116 human colon cancer cell lines. The cytotoxicities of platinum complexes are related to the nature of the carrier ligand and leaving group. Complex 5'b, viz. cis-dichloro[(2R)-ethoxy-1,4-butanediamine] platinum (II), exhibits the greatest potency among those 21 tested platinum complexes in both cell lines.  相似文献   

17.
A novel synthetic method for the synthesis of the complexes cis-Pt(amine)2R(COO)2 is compared to two other methods involving the use of either barium dicarboxylate or sodium carboxylate. Pt(II) compounds with monodentate and bidentate amines were studied. The reaction involves the use of a silver dicarboxylato complex, which is the intermediate in the new synthetic procedure. The crystal structure of the silver intermediate with the ligand 1,1-cyclobutanedicarboxylate (1,1-CBDCA) was determined by X-ray diffraction. The crystal Ag2(1,1-CBDCA) has a very interesting 3-D extended structure. The complexes cis-Pt(amine)2R(COO)2 were studied in solution by multinuclear (1H, 13C and 195Pt) magnetic resonance spectroscopy, but the solubilities are very low. D2O was found to be the best solvent. In 195Pt NMR, the complexes containing bidentate amines forming five-membered chelates were observed at higher fields than those containing monodentate amines. The resonances of the NH3 compounds were also found at lower fields than the primary amine complexes. All the dicarboxylato ligands form six-membered chelates except 1,2-CBDCA, whose Pt(II) compounds were observed at lower fields than the others. The crystal structures of Pt(en)(1,1-CBDCA), Pt(Meen)(1,1-CBDCA) and Pt(en)(benzylmalonato) were confirmed by X-ray diffraction methods. Several compounds are disordered. The crystals are stabilized by intermolecular hydrogen bonds between the -NH2 groups and the carboxylato O atoms.  相似文献   

18.
The reaction between [PtCl(dmso)(en)]Cl (dmso=dimethyl sulfoxide, en=ethylenediamine) and N-(3-pyridyl)-2-(4-(trifluoromethyl)phenyl)diazenecarboxamide (L) was studied using multinuclear NMR spectroscopy. The water-soluble complexes [PtCl(en)(L-N1)](+) (1) and [Pt(en)(L-N1)(2)](2+) (2) were isolated and their reactions with glutathione (GSH) were investigated to assess the oxidation properties of coordinated L. Both species 1 and 2 oxidized GSH to GSSG, while the reduced form of L (semicarbazide, SL) remained coordinated to Pt(2+). In complex 1 the labile chloride ion was substituted by the thiol moiety of GSH, which gave rise to the release of en in excess GSH over a period of 7 days. Complexes [PtCl(dmso)(en)]Cl, 1, 2 and ligand L were tested against T24 bladder carcinoma cells. Ligand L and complexes 1 and 2 showed higher cytotoxicity than [PtCl(dmso)(en)]Cl.  相似文献   

19.
A new platinum(II) complex containing a pyridine nucleus and a dithiocarbamate moiety as ligands ([Pt(ESDT)(Py)Cl]) was evaluated for in vitro cytotoxicity in the cisplatin-sensitive human ovarian 2008 and in the isogenic-resistant C13* cell lines. In both cell types, a tumor cell growth inhibition greater than cisplatin and a complete lack of cross-resistance in C13* cells were found. Despite its molecular size, [Pt(ESDT)(Py)Cl] accumulation was much higher than cisplatin both in parent and resistant cells. Studying the mechanism of action in cell-free media, we established that [Pt(ESDT)(Py)Cl] more efficiently interacts with DNA in vitro compared to cisplatin maintaining a binding preference for GG rich sequences of DNA. On the contrary, DNA platination in vivo by [Pt(ESDT)(Py)Cl] was found lower than cisplatin. An analysis of the type of DNA lesions induced by [Pt(ESDT)(Py)Cl] suggests that the cytotoxic efficacy and the ability to overcome cisplatin resistance seem to be related to a different mechanism of interaction with DNA and/or with other key cellular components.  相似文献   

20.
From the reaction between dihydroxoplatinum(II) and l-ascorbic acid, two types of platinum(II) ascorbate complexes were obtained and structurally characterized with ethylenediamine (en), N,N-dimethylethylenediamine (dmen) and N,N,N′-trimethylethylenediamine (trimen) as stabilizing ligands. In [Pt(en)(asc-C,O)] (1), [Pt(dmen)(asc-C,O)] (2) and [Pt(trimen)(asc-C,O)] (4), the ascorbate dianion forms a five-membered chelate ring, coordinating to the Pt(II) ion at the 2-carbon and the 5-oxygen atoms (C,O-chelate). From the same mother solution, crystals of [Pt(trimen)(asc-O,O′)] (3) were obtained during the precipitation of 4; in 3 the ascorbate is bound to the Pt at the 2- and 3-oxygen atoms (O,O′-chelate). Compounds 3 and 4 are the first well-characterized linkage isomers among the transition-metal ascorbate complexes. The O,O′-chelated 3 slowly changes to the C,O-chelated 4 in an aqueous solution. Bulkiness of the stabilizing ligand, i.e. en, dmen and trimen has an influence on the formation of the C,O-chelated species, 1, 2 and 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号