共查询到20条相似文献,搜索用时 15 毫秒
1.
Biotechnology Letters - The extraction of the hemicellulose fraction of sugarcane bagasse (SCB) by acid hydrolysis was evaluated in an autoclave and a Parr reactor aiming the application of the... 相似文献
2.
Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate 总被引:1,自引:0,他引:1
This study investigated the possibility of utilizing detoxified sugarcane bagasse hydrolysate (DSCBH) as an alternative carbon source to culture Yarrowia lipolytica Po1g for microbial oil and biodiesel production. Sugarcane bagasse hydrolysis with 2.5% HCl resulted in maximum total sugar concentration (21.38 g/L) in which 13.59 g/L is xylose, 3.98 g/L is glucose, and 2.78 g/L is arabinose. Detoxification of SCBH by Ca(OH)2 neutralization reduced the concentration of 5-hydroxymethylfurfural and furfural by 21.31% and 24.84%, respectively. Growth of Y. lipolytica Po1g in DSCBH with peptone as the nitrogen source gave maximum biomass concentration (11.42 g/L) compared to NH4NO3 (6.49 g/L). With peptone as the nitrogen source, DSCBH resulted in better biomass concentration than d-glucose (10.19 g/L), d-xylose (9.89 g/L) and NDSCBH (5.88 g/L). The maximum lipid content, lipid yield and lipid productivity of Y. lipolytica Po1g grown in DSCBH and peptone was 58.5%, 6.68 g/L and 1.76 g/L-day, respectively. 相似文献
3.
A catabolite derepressed Bacillus subtilis strain KCC103 was used to produce alpha-amylase in medium containing sugarcane bagasse hydrolysate (SBH). Addition of SBH (1% reducing sugar (w/v)) to the nutrient medium supported maximum alpha-amylase production of 67.4 Um l(-1). HPLC analysis of SBH showed the presence of glucose, xylose and arabinose in the ratio of 0.9:1.0:0.16 (w/w/w). In SBH-medium glucose and xylose were consumed completely while arabinose remained unutilized. Uptake rate of glucose was 2-folds higher than xylose but rate of alpha-amylase production with xylose was 1.5-folds higher than glucose. Arabinose had no effect on growth and alpha-amylase synthesis. Further, alpha-amylase production in SBH-medium was enhanced to 144.5 Um l(-1) (2.2-fold) by response surface methodology where the levels of SBH, and other media components were varied. The modified medium consisted of (in gl(-1)) SBH: 24; peptone: 17.43; yeast extract: 1.32 and beef extract: 1.82. High level of SBH showed no significant inhibition of alpha-amylase synthesis. The derepressed strain KCC103 is useful to produce alpha-amylase economically in short time (30-36 h). 相似文献
4.
Sugarcane bagasse hydrolysis with 2.5% (v/v) HCl yielded 30.29g/L total reducing sugars along with various fermentation inhibitors such as furans, phenolics and acetic acid. The acid hydrolysate when treated with anion exchange resin brought about maximum reduction in furans (63.4%) and total phenolics (75.8%). Treatment of hydrolysate with activated charcoal caused 38.7% and 57.5% reduction in furans and total phenolics, respectively. Laccase reduced total phenolics (77.5%) without affecting furans and acetic acid content in the hydrolysate. Fermentation of these hydrolysates with Candida shehatae NCIM 3501 showed maximum ethanol yield (0.48g/g) from ion exchange treated hydrolysate, followed by activated charcoal (0.42g/g), laccase (0.37g/g), overliming (0.30g/g) and neutralized hydrolysate (0.22g/g). 相似文献
5.
Carvalho W Silva SS Vitolo M Felipe MG Mancilha IM 《Zeitschrift für Naturforschung. C, Journal of biosciences》2002,57(1-2):109-112
Candida guilliermondii cells were immobilized in Ca-alginate beads and used for xylitol production from concentrated sugarcane bagasse hydrolysate during five successive fermentation batches, each lasting 48 hours. The bioconversion efficiency of 53.2%, the productivity of 0.50 g/l x h and the final xylitol concentration of 23.8 g/l obtained in the first batch increased to 61.5%, 0.59 g/l x h and 28.4 g/l, respectively, in the other four batches (mean values), with variation coefficients of up to 2.3%. 相似文献
6.
In this study, atmospheric and room temperature plasma and ultraviolet mutagenesis was studied for astaxanthin overproducing mutant. Phaffia rhodozyma mutant Y1 was obtained from the selection plate with 120 μmol/L diphenylamine as selection agent, and its carotenoid concentration and content were 54.38 mg/L and 5.38 mg/g, which were 19.02 % and 21.20 % higher than that of the original strain, respectively. Sugarcane bagasse hydrolysate was used for astaxanthin production by mutant Y1 at 22 °C and 220 rpm for 96 h, and the biomass and carotenoid concentration reached 12.65 g/L and 88.57 mg/L, respectively. Ultrasonication and cellulase were used to break cell wall and the parameters were optimized, achieving an astaxanthin extraction rate of 96.01 %. The present work provided a novel combined mutagenesis method for astaxanthin overproducing mutant and a green cell wall disruption process for astaxanthin extraction, which would play a solid foundation on the development of natural astaxanthin. 相似文献
7.
The operational conditions for xylitol production by fermentation of sugarcane bagasse hydrolysate in a fluidized bed reactor with cells immobilized on zeolite were evaluated. Fermentations were carried out under different conditions of air flowrate (0.0125-0.0375 vvm), zeolite mass (100-200 g), initial pH (4-6), and xylose concentration (40-60 g/L), according to a 2(4) full factorial design. The air flowrate increase resulted in a metabolic deviation from product to biomass formation. On the other hand, the pH increase favored both the xylitol yield (Y(P/S)) and volumetric productivity (Q(P)), and the xylose concentration increase positively influenced the xylitol concentration. The best operational conditions evaluated were based on the use of an air flowrate of 0.0125 vvm, 100 g of zeolite, pH 6, and xylose concentration of 60 g/L. Under these conditions, 38.5 g/L of xylitol were obtained, with a Y(P/S) of 0.72 g/g, Q(P) of 0.32 g/L.h, and cell retention of 25.9%. 相似文献
8.
Adaptation of a xylose-utilizing genetically engineered strain of Saccharomyces cerevisiae to sugarcane bagasse hydrolysates by cultivation during 353h using medium with increasing concentrations of inhibitors, including phenolic compounds, furaldehydes and aliphatic acids, led to improved performance with respect to ethanol production. The remaining xylose concentration in the medium at the end of the cultivation was 5.2g l(-1), while it was 11gl(-1) in the feed, indicating that approximately half of the xylose was consumed. The performance of the adapted strain was compared with the parental strain with respect to its ability to ferment three bagasse hydrolysates with different inhibitor concentration. The ethanol yield after 24h of fermentation of the bagasse hydrolysate with lowest inhibitor concentration increased from 0.18gg(-1) of total sugar with the non-adapted strain to 0.38gg(-1) with the adapted strain. The specific ethanol productivity increased from 1.15g ethanol per g initial biomass per h with the non-adapted strain to 2.55gg(-1) h(-1) with the adapted strain. The adapted strain performed better than the non-adapted also in the two bagasse hydrolysates containing higher concentrations of inhibitors. The adapted strain converted the inhibitory furaldehydes 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF) at a faster rate than the non-adapted strain. The xylose-utilizing ability of the yeast strain did not seem to be affected by the adaptation and the results suggest that ethanol rather than xylitol was formed from the consumed xylose. 相似文献
9.
Two-stage treatments of sugarcane bagasse with mild alkali and acidic 1,4-dioxane were performed. Pretreatment with 1M NaOH aqueous solution at 20, 25, 30, 35, and 40 degrees C for 18 h released 55.5%, 57.3%, 59.1%, 60.9%, and 62.1% of the original hemicelluloses, respectively. Post-treatment of the corresponding alkali-treated residue with 1,4-dioxane-2M HCl (9:1, v/v) at 87 degrees C for 2h, respectively, degraded 11.6%, 11.9%, 11.4%, 10.9%, and 10.6% of hemicelluloses (% dry starting material). It was found that the five alkali-soluble hemicellulosic preparations contained a much higher amounts of xylose (78.0-82.2%) and slightly higher uronic acids (4.8-5.8%), mainly 4-O-methyl-alpha-d-glucopyranosyluronic acid, but were lower in arabinose (9.3-11.7%) and glucose (2.2-4.1%) than those of the corresponding five acidic dioxane-degraded hemicellulosic fractions in which xylose (44.9-46.8%), arabinose (35.9-38.1%), and glucose (13.0-13.7%) were the major sugar constituents. The studies revealed that the five alkali-soluble hemicellulosic preparations were more linear and acidic, and had a large molecular weight (35,200-37,430 g mol(-1)) than those of the hemicellulosic fractions (12,080-13,320 g mol(-1)) degraded during the acidic dioxane post-treatment. This demonstrated that the post-treatment with acidic dioxane under the condition used resulted in substantial degradation of the hemicellulosic polymers. The 10 hemicellulosic samples were further characterized by FT-IR and 1H and 13C NMR spectroscopy, GPC and thermal analysis, and the results are reported. 相似文献
10.
Gaoxiang Qi Fen Peng Lian Xiong Xiaoqing Lin Chao Huang Hailong Li 《Preparative biochemistry & biotechnology》2017,47(3):276-281
Extraction of high-value products from agricultural wastes is an important component for sustainable bioeconomy development. In this study, wax extraction from sugarcane bagasse was performed and the beneficial effect of dewaxing pretreatment on the enzymatic hydrolysis was investigated. About 1.2% (w/w) of crude sugarcane wax was obtained from the sugarcane bagasse using the mixture of petroleum ether and ethanol (mass ratio of 1:1) as the extraction agent. Results of Fourier-transform infrared characterization and gas chromatography–mass spectrometry qualitative analysis showed that the crude sugarcane wax consisted of fatty fractions (fatty acids, fatty aldehydes, hydrocarbons, and esters) and small amount of lignin derivatives. In addition, the effect of dewaxing pretreatment on the enzymatic hydrolysis of sugarcane bagasse was also investigated. The digestibilities of cellulose and xylan in dewaxed sugarcane bagasse were 18.7 and 10.3%, respectively, compared with those of 13.1 and 8.9% obtained from native sugarcane bagasse. The dewaxed sugarcane bagasse became more accessible to enzyme due to the disruption of the outermost layer of the waxy materials. 相似文献
11.
《Fungal biology》2020,124(7):639-647
Yeasts associated with rotting wood from four Atlantic Rain forest sites in Brazil were investigated using a culture medium based on sugarcane bagasse hydrolysate. A total of 330 yeast strains were isolated. Pichia manshurica, Candida pseudolambica, and Wickerhamomyces sp. 3 were the most frequently isolated species. Fourteen novel species were obtained in this study. All isolates were tested for their ability to ferment d-xylose and to produce xylanases. In the fermentation assays using d-xylose (30 g L−1), the main ethanol producers were Scheffersomyces stipitis (14.08 g L−1), Scheffersomyces sp. (7.94 g L−1) and Spathaspora boniae (7.16 g L−1). Sc. stipitis showed the highest ethanol yield (0.42 g g−1) and the highest productivity (0.39 g L−1h−1). The fermentation results using hemicellulosic hydrolysate showed that Sc. stipitis was the best ethanol producer, achieving a yield of 0.32 g g−1, while Sp. boniae and Scheffersomyces sp. were excellent xylitol producers. The best xylanase-producing yeasts at 50 °C belonged to the species Su. xylanicola (0.487 U mg−1) and Saitozyma podzolica (0.384 U mg−1). The results showed that rotting wood collected from the Atlantic Rainforest is a valuable source of yeasts able to grow in sugarcane bagasse hydrolysate, including species with promising biotechnological properties. 相似文献
12.
Silva LF Taciro MK Michelin Ramos ME Carter JM Pradella JG Gomez JG 《Journal of industrial microbiology & biotechnology》2004,31(6):245-254
Fifty-five bacterial strains isolated from soil were screened for efficient poly-3-hydroxybutyrate (P3HB) biosynthesis from xylose. Three strains were also evaluated for the utilization of bagasse hydrolysate after different detoxification steps. The results showed that activated charcoal treatment is pivotal to the production of a hydrolysate easy to assimilate. Burkholderia cepacia IPT 048 and B. sacchari IPT 101 were selected for bioreactor studies, in which higher polymer contents and yields from the carbon source were observed with bagasse hydrolysate, compared with the use of analytical grade carbon sources. Polymer contents and yields, respectively, reached 62% and 0.39 g g–1 with strain IPT 101 and 53% and 0.29 g g–1 with strain IPT 048. A higher polymer content and yield from the carbon source was observed under P limitation, compared with N limitation, for strain IPT 101. IPT 048 showed similar performances in the presence of either growth-limiting nutrient. In high-cell-density cultures using xylose plus glucose under P limitation, both strains reached about 60 g l–1 dry biomass, containing 60% P3HB. Polymer productivity and yield from this carbon source reached 0.47 g l–1 h–1 and 0.22 g g–1, respectively. 相似文献
13.
Ernesto A Martnez Silvio S Silva Joo B Almeida e Silva Ana I.N Solenzal Maria G.A Felipe 《Process Biochemistry》2003,38(12):1677-1683
Continuous fermentation of sugarcane bagasse hemicellulosic hydrolysate by the yeast Candida guilliermondii FTI 20037 was used for xylitol production from xylose. Experiments were carried out in a reactor with 1.25 l of treated hydrolysate, at 30 °C and 300 rpm. A 22 full-factorial central composite design was employed for experimental study and analysis of the results. A statistical analysis of the results showed that the effects of the pH and dilution rate (D), the interactions between these variables and the second-order effect of D on the xylitol volumetric productivity (Qp) were significant at a 95% confidence level. The second-order effect of pH was also significant at a 90% confidence level. The kLa effect on the Qp was not significant. A volumetric productivity of 0.68 g/l h, representing 95.8% of the predicted value (0.72 g/l h), was obtained. 相似文献
14.
Production of bioethanol in sugarcane bagasse hemicellulosic hydrolysate by Scheffersomyces parashehatae,Scheffersomyces illinoinensis and Spathaspora arborariae isolated from Brazilian ecosystems 下载免费PDF全文
R.M. Cadete M.A. Melo‐Cheab K.J. Dussán R.C.L.B. Rodrigues S.S. da Silva F.C.O. Gomes C.A. Rosa 《Journal of applied microbiology》2017,123(5):1203-1213
15.
Walter Carvalho Julio C. Santos Larissa Canilha Joo B. Almeida e Silva Maria G.A. Felipe Ismael M. Mancilha Silvio S. Silva 《Process Biochemistry》2004,39(12):2135-2141
Candida guilliermondii FTI 20037 cells were entrapped in Ca-alginate beads and used for xylitol production from sugarcane bagasse hemicellulosic hydrolysate in a stirred tank reactor (STR). Screening design and response surface methodologies were used to determine adequate cultivation conditions for this fermentation system. Quadratic models were fitted to the experimental data by regression analysis, considering the yield (YP/S) and the productivity (QP) of the xylose-to-xylitol bioconversion as dependent variables. Using a five-fold concentrated hydrolysate, air flowrate of 1.30 l/min, agitation speed of 300 rpm, initial cell concentration of 1.4 g/l and value 6.0 for the initial pH of the fermentation medium resulted in a xylitol production of 47.5 g/l after 120 h of fermentation, corresponding to a YP/S of 0.81 g/g and to a QP of 0.40 g/l h. 相似文献
16.
L. Sene A. Converti M. Zilli M. Felipe S. Silva 《Applied microbiology and biotechnology》2001,57(5-6):738-743
Batch xylitol production from concentrated sugarcane bagasse hydrolysate by Candida guilliermondii was performed by progressively adapting the cells to the medium. Samples were analyzed to monitor sugar and acetic acid consumption, xylitol, arabitol, ethanol, and carbon dioxide production, as well as cell growth. Both xylitol yield and volumetric productivity remarkably increased with the number of adaptations, demonstrating that the more adapted the cells, the better the capacity of the yeast to reduce xylose to xylitol in hemicellulose hydrolysates. Substrate and product concentrations were used in carbon material balances to study in which way the different carbon sources were utilized by this yeast under microaerobic conditions, as well as to shed light on the effect of the progressive adaptation to the medium on its fermentative activity. Such a theoretical means allowed estimation for the first time of the relative contribution of each medium component to the formation of the main products of this fermentation system. 相似文献
17.
18.
19.
Fractionation of sugarcane bagasse by hydrothermal treatment 总被引:1,自引:0,他引:1
Hydrothermal treatment of sugarcane bagasse was conducted using a semi-batch reactor to develop a new biomass fractionation method that has low impact in the environment. A continuously increasing temperature was used in this treatment. It was found that hemicellulose and lignin could be mainly extracted as a water-soluble fraction at 200-230 degrees C, while the cellulose fraction was hydrolyzed at higher temperatures (230-280 degrees C) or recovered as solid residue from this treatment. Detailed analyses of the solid residue indicated that the crystal structure and the chemical composition of the residue were in good accordance with those of untreated crystalline cellulose. These experimental and analytical findings show that this method is promising for removal of hemicellulose and lignin from woody biomass without any catalyst and organic solvent. 相似文献
20.
Mellinger-Silva C Simas-Tosin FF Schiavini DN Werner MF Baggio CH Pereira IT da Silva LM Gorin PA Iacomini M 《Bioresource technology》2011,102(22):10524-10528
After industrial processing, one-third of sugarcane culms is converted into residual bagasse. The xylan-rich hemicellulose components of the bagasse were extracted with hot aqueous alkali (AX-CRUDE). Approximately 82% of the extracted hemicelluloses was precipitated with ethanol (AX-PET). Both AX-CRUDE and AX-PET contained an arabinoxylan as confirmed by 13C NMR and methylation analysis. Fraction AX-PET was fed to female Wistar rats with ethanol-induced gastric lesions. Oral administrations of 30, 100, and 300 mg/kg reduced the gastric lesion area by over 50%, and replenished ethanol-induced depletion of glutathione. The polysaccharide also increased mucus production by over 70%, indicating its cytoprotective action on experimentally induced gastric ulcers. These findings are significant, since a biologically active compound can be extracted in high yields from an abundant, readily available residue. 相似文献