首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Marijuana and aspirin have been used for millennia to treat a wide range of maladies including pain and inflammation. Both cannabinoids, like marijuana, that exert anti-inflammatory action through stimulating cannabinoid receptors, and cyclooxygenase (COX) inhibitors, like aspirin, that suppress pro-inflammatory eicosanoid production have shown beneficial outcomes in mouse models of neurodegenerative diseases and cancer. Both cannabinoids and COX inhibitors, however, have untoward effects that discourage their chronic usage, including cognitive deficits and gastrointestinal toxicity, respectively. Recent studies have uncovered that the serine hydrolase monoacylglycerol lipase (MAGL) links the endocannabinoid and eicosanoid systems together through hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG) to provide the major arachidonic acid (AA) precursor pools for pro-inflammatory eicosanoid synthesis in specific tissues. Studies in recent years have shown that MAGL inhibitors elicit anti-nociceptive, anxiolytic, and anti-emetic responses and attenuate precipitated withdrawal symptoms in addiction paradigms through enhancing endocannabinoid signaling. MAGL inhibitors have also been shown to exert anti-inflammatory action in the brain and protect against neurodegeneration through lowering eicosanoid production. In cancer, MAGL inhibitors have been shown to have anti-cancer properties not only through modulating the endocannabinoid–eicosanoid network, but also by controlling fatty acid release for the synthesis of protumorigenic signaling lipids. Thus, MAGL serves as a critical node in simultaneously coordinating multiple lipid signaling pathways in both physiological and disease contexts. This review will discuss the diverse (patho)physiological roles of MAGL and the therapeutic potential of MAGL inhibitors in treating a vast array of complex human diseases.  相似文献   

3.
Fat digestion in humans requires not only the classical pancreatic lipase but also gastric lipase, which is stable and active despite the highly acidic stomach environment. We have solved the structure of recombinant human gastric lipase at 3.0 A resolution, the first structure to be described within the mammalian acid lipase family. This globular enzyme (379 residues) consists of a core domain, belonging to the alpha/beta hydrolase fold family, and an extrusion domain. It possesses a classical catalytic triad (Ser 153, His 353, Asp 324) and an oxyanion hole (NH groups of Gln 154 and Leu 67). Four N-glycosylation sites were identified on the electron density maps. The catalytic serine is deeply buried under the extrusion domain, which is composed of a 'cap' domain and a segment consisting of 30 residues, which can be defined as a lid. Its displacement is necessary for the substrates to access the active site. A phosphonate inhibitor was positioned in the active site which clearly suggests the location of the hydrophobic substrate binding site.  相似文献   

4.
In order to prevent photodestruction by high light, photosynthetic organisms have evolved a number of mechanisms, known as non-photochemical quenching (NPQ), that deactivate the excited states of light harvesting pigments. Here we investigate the NPQ mechanism in the cyanobacterium Synechocystis sp. PCC 6803 mutant deficient in both photosystems. Using non-linear laser fluorimetry, we have determined molecular photophysical characteristics of phycocyanin and spectrally distinct forms of allophycocyanin for the cells in non-quenched and quenched states. Our analysis of non-linear fluorescence characteristics revealed that NPQ activation leads to an ~2-fold decrease in the relaxation times of both allophycocyanin fluorescence components, F660 and F680, and a 5-fold decrease in the effective excitation cross-section of F680, suggesting an emergence of a pathway of energy dissipation for both types of allophycocyanin. In contrast, NPQ does not affect the rates of singlet-singlet exciton annihilation. This indicates that, upon NPQ activation, the excess excitation energy is transferred from allophycocyanins to quencher molecules (presumably 3'hydroxyechinenone in the orange carotenoid protein), rather than being dissipated due to conformational changes of chromophores within the phycobilisome core. Kinetic measurements of fluorescence quenching in the Synechocystis mutant revealed the presence of several stages in NPQ development, as previously observed in the wild type. However, the lack of photosystems in the mutant enhanced the magnitude of NPQ as compared to the wild type, and allowed us to better characterize this process. Our results suggest a more complex kinetics of the NPQ process, thus clarifying a multistep model for the formation of the quenching center.  相似文献   

5.
Monoacylglycerol lipase (MAGL) is one of the key enzymes of the endocannabinoid system (ECS). It hydrolyzes one of the major endocannabinoid, 2-arachidonoylglycerol (2-AG), an endogenous full agonist at G protein coupled cannabinoid receptors CB1 and CB2. Numerous studies showed that MGL inhibitors are potentially useful for the treatment of pain, inflammation, cancer and CNS disorders. These provocative findings suggested that pharmacological inhibition of MAGL function may confer significant therapeutic benefits. In this study, we presented hybrid ligand and structure-based approaches to obtain a novel set of virtual leads as MAGL inhibitors. The constraints used in this study, were Glide score, binding free energy estimates and ADME properties to screen the ZINC database, containing approximately 21 million compounds. A total of seven virtual hits were obtained, which showed significant binding affinity towards MAGL protein. Ligand, ZINC24092691 was employed in complex form with the protein MAGL, for molecular dynamics simulation study, because of its excellent glide score, binding free energy and ADME properties. The RMSD of ZINC24092691 was observed to stay at 0.1 nm (1 Å) in most of the trajectories, which further confirmed its ability to inhibit the protein MAGL. The hits were then evaluated for their ability to inhibit human MAGL. The compound ZINC24092691 displayed the noteworthy inhibitory activity reducing MAGL activity to 21.15% at 100 nM concentration, with an IC50 value of 10 nM.  相似文献   

6.
Monoacylglycerol lipases (MGLs) catalyse the hydrolysis of monoacylglycerol into free fatty acid and glycerol. MGLs have been identified throughout all genera of life and have adopted different substrate specificities depending on their physiological role. In humans, MGL plays an integral part in lipid metabolism affecting energy homeostasis, signalling processes and cancer cell progression. In bacteria, MGLs degrade short-chain monoacylglycerols which are otherwise toxic to the organism. We report the crystal structures of MGL from the bacterium Bacillus sp. H257 (bMGL) in its free form at 1.2 Å and in complex with phenylmethylsulfonyl fluoride at 1.8 Å resolution. In both structures, bMGL adopts an α/β hydrolase fold with a cap in an open conformation. Access to the active site residues, which were unambiguously identified from the protein structure, is facilitated by two different channels. The larger channel constitutes the highly hydrophobic substrate binding pocket with enough room to accommodate monoacylglycerol. The other channel is rather small and resembles the proposed glycerol exit hole in human MGL. Molecular dynamics simulation of bMGL yielded open and closed states of the entrance channel and the glycerol exit hole. Despite differences in the number of residues, secondary structure elements, and low sequence identity in the cap region, this first structure of a bacterial MGL reveals striking structural conservation of the overall cap architecture in comparison with human MGL. Thus it provides insight into the structural conservation of the cap amongst MGLs throughout evolution and provides a framework for rationalising substrate specificities in each organism.  相似文献   

7.
The endogenous cannabinoid system plays an important role in the regulation of gastrointestinal function in health and disease. Endocannabinoid levels are regulated by catabolic enzymes. Here, we describe the presence and localization of monoacylglycerol lipase (MGL), the major enzyme responsible for the degradation of 2-arachidonoylglycerol. We used molecular, biochemical, immunohistochemical, and functional assays to characterize the distribution and activity of MGL. MGL mRNA was present in rat ileum throughout the wall of the gut. MGL protein was distributed in the muscle and mucosal layers of the ileum and in the duodenum, proximal colon, and distal colon. We observed MGL expression in nerve cell bodies and nerve fibers of the enteric nervous system. There was extensive colocalization of MGL with PGP 9.5 and calretinin-immunoreactive neurons, but not with nitric oxide synthase. MGL was also present in the epithelium and was highly expressed in the small intestine. Enzyme activity levels were highest in the duodenum and decreased along the gut with lowest levels in the distal colon. We observed both soluble and membrane-associated enzyme activities. The MGL inhibitor URB602 significantly inhibited whole gut transit in mice, an action that was abolished in cannabinoid 1 receptor-deficient mice. In conclusion, MGL is localized in the enteric nervous system where endocannabinoids regulate intestinal motility. MGL is highly expressed in the epithelium, where this enzyme may have digestive or other functions yet to be determined.  相似文献   

8.
The respective roles of monoacylglycerol lipase and hormone-sensitive lipase in the sequential hydrolysis of adipose tissue triacylglycerols have been examined. An adipose tissue preparation, containing both lipases in approximately the same proportion as in the intact tissue, hydrolyzed emulsified tri- or dioleoylglycerol to fatty acids and glycerol, with little accumulation of di- or monooleoylglycerol. Selective removal of the monoacylglycerol lipase by immunoprecipitation markedly reduced the glycerol release. Isolated hormone-sensitive lipase hydrolyzed acylglycerols with a marked accumulation of monoacylglycerol in accordance with the positional specificity of this enzyme (Fredrikson, G. and Belfrage, P. (1983) J. Biol. Chem. 258, 14253-14256). Addition of increasing amounts of isolated monoacylglycerol lipase led to a corresponding increase in glycerol release, due to hydrolysis of the monoacylglycerols formed. The reaction proceeded to completion when the relative proportion of the two lipases was similar to that in the intact tissue. These findings indicate that hormone-sensitive lipase catalyzes the hydrolysis of triacylglycerol in the rate-limiting step of adipose tissues lipolysis, and of the resulting diacylglycerol, whereas the action of monoacylglycerol lipase is required in the final hydrolysis of the 2-monoacylglycerols produced.  相似文献   

9.
10.
Substrate specificity of pancreatic lipase   总被引:1,自引:0,他引:1  
  相似文献   

11.
The hydrolysis of long-chain monoester of ethanediol by rat,liver subcellular fractions was investigated in order to define the carboxylic acid ester hydrolase involved and to localize the enzymic activity. We found that with 1-O-hexadecanoyl [U-14C]ethanediol as substrate, hydrolytic activity was foremost associated with the rough microsomal fraction. The pH optimum occurred at 8.5. The apparent Km and V values were 6.5 . 10(-4) M and 13 mumol/h per mg microsomal protein, respectively. Enzymic activity was inhibited by p-chloromercuribenzoate and by diisopropylfluorophosphate, whereas NaF was less effective and CaCl2 did not affect apparent activity. Amongst a number of carboxylic acid esters tested as substrate, only long-chain 1-acyl and 2-acyl glycerols inhibited acyl diol hydrolysis competitively (Ki approximately 0.9 mM). It was concluded that long-chain monoesters of ethanediol are hydrolyzed by the monoacyl glycerol lipase system associated with the rat liver microsomal fraction. Because diol monoester is also utilized by the cholinephosphotransferase system of liver to form highly lytic acyl diol phosphocholines, efficient diol monoester hydrolysis by monoglyceride lipase may be a significant step in regulating acyl diol phosphocholine levels in biological systems.  相似文献   

12.
The macrophage elastase enzyme (MMP-12) expressed mainly in alveolar macrophages has been identified in the mouse lung as the main destructive agent associated with cigarette smoking, which gives rise to emphysema, both directly via elastin degradation and indirectly by disturbing the proteinase/antiproteinase balance via inactivation of the alpha1-proteinase inhibitor (alpha1-PI), the antagonist of the leukocyte elastase. The catalytic domain of human recombinant MMP-12 has been crystallized in complex with the broad-specificity inhibitor batimastat (BB-94). The crystal structure analysis of this complex, determined using X-ray data to 1.1 A and refined to an R-value of 0.165, reveals an overall fold similar to that of other MMPs. However, the S-shaped double loop connecting strands III and IV is fixed closer to the beta-sheet and projects its His172 side-chain further into the rather hydrophobic active-site cleft, defining the S3 and the S1-pockets and separating them from each other to a larger extent than is observed in other MMPs. The S2-site is planar, while the characteristic S1'-subsite is a continuous tube rather than a pocket, in which the MMP-12-specific Thr215 replaces a Val residue otherwise highly conserved in almost all other MMPs. This alteration might allow MMP-12 to accept P1' Arg residues, making it unique among MMPs. The active-site cleft of MMP-12 is well equipped to bind and efficiently cleave the AlaMetPhe-LeuGluAla sequence in the reactive-site loop of alpha1-PI, as occurs experimentally. Similarities in contouring and particularly a common surface hydrophobicity both inside and distant from the active-site cleft explain why MMP-12 shares many substrates with matrilysin (MMP-7). The MMP-12 structure is an excellent template for the structure-based design of specific inhibitors for emphysema therapy and for the construction of mutants to clarify the role of this MMP.  相似文献   

13.
A new lipase from Penicillium camembertii U-150, which is specific for monoacylglycerols and diacylglycerols, but not triacylglycerols, was purified as four active components using concanavalin-A-Sepharose column chromatography, crystallized in the form of needles, and its properties investigated. No significant difference was observed in substrate specificity, but molecular mass and other enzymatic properties, such as pH, heat stability and optimum pH and temperature, were clearly different between the unadsorbed and the three adsorbed components on concanavalin-A-Sepharose; the three adsorbed components were similar to each other and more stable than the unadsorbed component. On the other hand, after enzymatic removal of carbohydrates from the three adsorbed components, their enzymatic properties became similar to those of the unadsorbed component. The carbohydrates of this lipase contribute to the stability of the enzyme, but not to its enzyme activity. The amino acid compositions of the four components did not differ from each other, and tryptic mapping of the deglycosylated components and amino acid composition of the tryptic fragments were identical. The carbohydrate compositions of four intact components were, however, different from each other. All four components have the same polypeptide backbone and multiple forms of this lipase are due to the differences in composition of the carbohydrates bound in this lipase.  相似文献   

14.
15.
Six 1-3H-labeled analogues of farnesyl pyrophosphate have been studied as potential substrates for yeast and rat liver squalene synthetases: 2-methylfarnesyl pyrophosphate (4), 3-demethylfarnesyl pyrophosphate (5), 7,11-dimethyl-3-ethyl-2,6,10-dodecatrienyl pyrophosphate (6), 6,7,10,11-tetrahydrofarnesyl pyrophosphate (7), 4-methylthiofarnesyl pyrophosphate (8), and 4-fluorofarnesyl pyrophosphate (9). Analogues 4 and 5 are enzymatically incorporated into 11-methylsqualene (10) and 10-demethylsqualene (11), respectively, even if no farnesyl pyrophosphate is added to the incubations. None of the other analogues gives nonpolar products with either the yeast or liver enzymes. No tritium is enzymatically released to the medium from any of the analogues, indicating that they are not accepted at the first (proton exchanging) site. The data rule out formation of dead-end presqualene pyrophosphate products with analogues as first, but not as second, substrates. Implications of these results for the enzyme active-site topology and mechanism are discussed.  相似文献   

16.
1. The lipolytic activities that sequentially hydrolyze tri-, di- and monoacylglycerol in rat post-heparin heart effluents were examined. 2. Properties of triacylglycerol lipase (TAGL) activity were typical of lipoprotein lipase. Diacylglycerol lipase (DAGL) behaved similarly to TAGL, suggesting that both activities refer to the same catalytic entity. 3. Differences, particularly in thermal stability, between TAGL and DAGL activities on one hand, and monoacylglycerol lipase (MAGL) activity on the other, may reflect different intrinsic molecular properties. 4. TAGL, DAGL and MAGL activities could not be separated by physical means and appeared to belong to a single unit at the same site on the capillary wall.  相似文献   

17.
18.
The crystal structure of the bovine spleen cathepsin B (BSCB)-CA074 complex was refined to R = 0.152 using X-ray diffraction data up to 2.18 A resolution. BSCB is characterized by an extra Cys148-Cys252 disulfide bridge, as compared with rat and human CBs. Although the crystal structures of these enzymes showed similar overall folding, a difference was observed in the occluding loop, a structural element specific only to CB. Comparison of the torsion angles indicated the different flexibilities of their loop structures. The oxirane C6 atom of CA074 was covalently bonded to the Cys29 S(gamma) atom (C3-S(gamma)=1.81 A), where the S-configuration was transformed to the R-form. Concerning the oxirane carbon atom that participates in the covalent bonding with the Cys residue, an acceptable rule has been proposed. The substrate specificities at the Sn (n = 1-3) and Sn' (n=1 and 2) subsites of CB, together with the interaction features as to CA074, have been discussed in comparison with the crystal structure of the papain-CA028 (a CA074-related inhibitor) complex.  相似文献   

19.
IMP dehydrogenase (IMPDH) is an essential enzyme that catalyzes the first step unique to GTP synthesis. To provide a basis for the evaluation of IMPDH inhibitors as antimicrobial agents, we have expressed and characterized IMPDH from the pathogenic bacterium Streptococcus pyogenes. Our results show that the biochemical and kinetic characteristics of S. pyogenes IMPDH are similar to other bacterial IMPDH enzymes. However, the lack of sensitivity to mycophenolic acid and the Km for NAD (1180 microM) exemplify some of the differences between the bacterial and mammalian IMPDH enzymes, making it an attractive target for antimicrobial agents. To evaluate the basis for these differences, we determined the crystal structure of the bacterial enzyme at 1.9 A with substrate bound in the catalytic site. The structure was determined using selenomethionine-substituted protein and multiwavelength anomalous (MAD) analysis of data obtained with synchrotron radiation from the undulator beamline (19ID) of the Structural Biology Center at Argonne's Advanced Photon Source. S. pyogenes IMPDH is a tetramer with its four subunits related by a crystallographic 4-fold axis. The protein is composed of two domains: a TIM barrel domain that embodies the catalytic framework and a cystathione beta-synthase (CBS) dimer domain of so far unknown function. Using information provided by sequence alignments and the crystal structure, we prepared several site-specific mutants to examine the role of various active site regions in catalysis. These variants implicate the active site flap as an essential catalytic element and indicate there are significant differences in the catalytic environment of bacterial and mammalian IMPDH enzymes. Comparison of the structure of bacterial IMPDH with the known partial structures from eukaryotic organisms will provide an explanation of their distinct properties and contribute to the design of specific bacterial IMPDH inhibitors.  相似文献   

20.
Summary Lipases with different fatty acid specificity were produced byGeotrichum candidum depending on growth condition. The hydrolysis of olive oil was inhibited by glycerol tributyrate and was dependent on Ca-ions for running at maximal rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号