首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
MOTIVATION: An important contribution to the Gene Ontology (GO) project is to develop tools that facilitate the creation, maintenance and use of ontologies. Several tools have been created for communicating and using the GO project. However, a limitation with most of these tools is that they suffer from lack of a comprehensive search facility. We developed a web application, GOfetcher, with a very comprehensive search facility for the GO project and a variety of output formats for the results. GOfetcher has three different levels for searching the GO: 'Quick Search', 'Advanced Search' and 'Upload Files' for searching. The application includes a unique search option which generates gene information given a nucleotide or protein accession number which can then be used in generating GO information. The output data in GOfetcher can be saved into several different formats; including spreadsheet, comma-separated values and the extensible markup language (XML) format. The database is available at http://mcbc.usm.edu/gofetcher/.  相似文献   

2.
With the advent of high-throughput techniques, the number of patent applications containing biological sequences has been increasing rapidly in Korea. However, there is little information on gene relatedness of the Korean patent sequences. The primary aims of this study are two-fold. First, we associated Korean patent applications with genes. Second, we have constructed a database server, named Patome@Korea, to provide the gene-patent map and the Korean patent data containing biological sequences. To associate the sequences with genes, we have received patent sequence data from the Korean Intellectual Property Office (KIPO) and annotated them with RefSeq and Entrez Gene. Through the association analysis, we found that nearly 14.7% of human genes were related to Korean patenting, compared to 25% of human genes in the US patent. We have consolidated the association results and the patent sequence data to a relational database and implemented a web-based user interface to provide search service. The database can be queried using application number, applicant, titles, gene ID/name, and RefSeq number. We also provide web-based BLAST facility to allow users to compare their sequences against patent sequences. Equal contribution.  相似文献   

3.
There have been constant changes in the biology and behavior of the vector and parasite involved in the transmission of malaria. There is limited interest in developing new technologies and procedures for controlling the underlying factors of this threat, which poses an enormous challenge to health systems. To understand the various vector species and their interrelations is of prime importance in understanding the transmission mechanisms of malaria in order to react efficiently. To attain this objective, we have used an ontological approach to produce a database that we consider to be our own contribution in helping to control malarial vectors if eradication has been unsuccessful in the previous control campaign.  相似文献   

4.
There have been constant changes in the biology and behavior of the vector and parasite involved in the transmission of malaria. There is limited interest in developing new technologies and procedures for controlling the underlying factors of this threat, which poses an enormous challenge to health systems. To understand the various vector species and their interrelations is of prime importance in understanding the transmission mechanisms of malaria in order to react efficiently. To attain this objective, we have used an ontological approach to producing a database that we consider to be our own contribution in helping to control malaria vectors if eradication has been unsuccessful in the previous control campaign.  相似文献   

5.
The outcomes of pathway database computations depend on pathway ontology   总被引:3,自引:0,他引:3  
Different biological notions of pathways are used in different pathway databases. Those pathway ontologies significantly impact pathway computations. Computational users of pathway databases will obtain different results depending on the pathway ontology used by the databases they employ, and different pathway ontologies are preferable for different end uses. We explore differences in pathway ontologies by comparing the BioCyc and KEGG ontologies. The BioCyc ontology defines a pathway as a conserved, atomic module of the metabolic network of a single organism, i.e. often regulated as a unit, whose boundaries are defined at high-connectivity stable metabolites. KEGG pathways are on average 4.2 times larger than BioCyc pathways, and combine multiple biological processes from different organisms to produce a substrate-centered reaction mosaic. We compared KEGG and BioCyc pathways using genome context methods, which determine the functional relatedness of pairs of genes. For each method we employed, a pair of genes randomly selected from a BioCyc pathway is more likely to be related by that method than is a pair of genes randomly selected from a KEGG pathway, supporting the conclusion that the BioCyc pathway conceptualization is closer to a single conserved biological process than is that of KEGG.  相似文献   

6.
In order to predict the metabolic fate of an arbitrary compound based solely on structure, it is useful to be able to identify substructural 'functional groups' that are biochemically reactive. These functional groups are the substructural elements that can be removed and replaced to transform one compound into another. This problem of identifying functional groups is related to the problem of classifying compounds. The research presented here discusses the state of the art in biochemical databases and how these sources may be applied to the problem of classifying compounds based solely on structure. We describe a biochemical informatics system for processing molecular data and describe how 100 255 compositional (hasA) relationships are inferred between 835 abstractions and 9500 metabolites from the KEGG Ligand database. Specifically, we focus on the identification of amino acids and consider ways in which the inference of biochemical ontologies for metabolites will be improved in the future.  相似文献   

7.
The development of the Functional Genomics Investigation Ontology (FuGO) is a collaborative, international effort that will provide a resource for annotating functional genomics investigations, including the study design, protocols and instrumentation used, the data generated and the types of analysis performed on the data. FuGO will contain both terms that are universal to all functional genomics investigations and those that are domain specific. In this way, the ontology will serve as the "semantic glue" to provide a common understanding of data from across these disparate data sources. In addition, FuGO will reference out to existing mature ontologies to avoid the need to duplicate these resources, and will do so in such a way as to enable their ease of use in annotation. This project is in the early stages of development; the paper will describe efforts to initiate the project, the scope and organization of the project, the work accomplished to date, and the challenges encountered, as well as future plans.  相似文献   

8.
Recent years, a large amount of ontology learning algorithms have been applied in different disciplines and engineering. The ontology model is presented as a graph and the key of ontology algorithms is similarity measuring between concepts. In the learning frameworks, the information of each ontology vertex is expressed as a vector, thus the similarity measuring can be determined via the distance of the corresponding vector. In this paper, we study how to get an optimal distance function in the ontology setting. The tricks we presented are divided into two parts: first, the ontology distance learning technology in the setting that the ontology data have no labels; then, the distance learning approaches in the setting that the given ontology data are carrying real numbers as their labels. The result data of the four simulation experiments reveal that our new ontology trick has high efficiency and accuracy in ontology similarity measure and ontology mapping in special engineering applications.  相似文献   

9.
CYTOMER is a relational database of organs/tissues, cell types, physiological systems and developmental stages that currently focuses on the human system. From this database, we have derived an ontology for anatomical and morphological structures for the human organism which includes all embryonal stages and the cell types constituting these structures. The ontology has been transferred to the OWL format and is freely available for download at http://cytomer/bioinf.med.uni-goettingen.de.  相似文献   

10.
MOTIVATION: There has been an explosion of interest in the role of mitochondria in programmed cell death and other fundamental pathological processes underlying the development of human diseases. Nevertheless, the inventory of mitochondrial proteins encoded in the nuclear genome remains incomplete, providing an impediment to mitochondrial research at the interface with systems biology. We created the MiGenes database to further define the scope of the mitochondrial proteome in humans and model organisms including mice, rats, flies and worms as well as budding and fission yeasts. MiGenes is intended to stimulate mitochondrial research using model organisms. SUMMARY: MiGenes is a large-scale relational database that is automatically updated to keep pace with advances in mitochondrial proteomics and is curated to assure that the designation of proteins as mitochondrial reflects gene ontology (GO) annotations supported by high-quality evidence codes. A set of postulates is proposed to help define which proteins are authentic components of mitochondria. MiGenes incorporates >1160 new GO annotations to human, mouse and rat protein records, 370 of which represent the first GO annotation reflecting a mitochondrial localization. MiGenes employs a flexible search interface that permits batchwise accession number searches to support high-throughput proteomic studies. A web interface is provided to permit members of the mitochondrial research community to suggest modifications in protein annotations or mitochondrial status.  相似文献   

11.
12.
《Ecological Complexity》2008,5(3):272-279
As ecological data increases in breadth, depth, and complexity, the discipline of ecology is increasingly influenced by information science. While this influence provides many opportunities for ecologists, it also necessitates a change in how we manage and share data, and perhaps more fundamentally, define concepts in ecology. Specifically, the information technology process of automated data integration entirely depends upon consistent concept definition. A common tool used in computer science and engineering to specify meanings, which is both novel and offers significant potential to ecology, is an ontology. An ontology is a formal representation of knowledge in which concepts are described by their meaning and their relationship to each other. Ontologies are a tool that can be used to ‘explicitly specify a concept’ (Gruber, 1993) and this approach is uncommon in ecology. In this paper, we develop an ontology for the concept of ‘landscape’ that captures the most general definitions and usages of this term. We selected the concept of landscape because it is often used in very different ways by investigators and hence generates linguistic uncertainty. A graphic theoretic (i.e., visual) model is provided which describes the set of structuring rules we used to define the relationships between ‘landscape’ and appropriately related terms. Based upon these rules, a landscape necessarily contains a spatial component (i.e., area), structure and function (i.e., ecosystems), and is scale independent. This approach provides the set of necessary conditions for landscape studies to reduce linguistic uncertainty, and facilitate interoperability of data, i.e., in a manner that promotes data linkages and quantitative synthesis particularly by automatic data synthesis programs that are likely to become an important part of ecology in the future. Simply put, we use an ontology, a technique novel to ecology but not other disciplines, to define ‘landscape,’ thereby clearly delineating one subset of its potential general usage. As such this ontology can serve as both a checklist for landscape studies and a blueprint for additional ecological ontologies.  相似文献   

13.
14.
15.
This study developed a Smartphone Addiction Proneness Scale (SAPS) based on the existing internet and cellular phone addiction scales. For the development of this scale, 29 items (1.5 times the final number of items) were initially selected as preliminary items, based on the previous studies on internet/phone addiction as well as the clinical experience of involved experts. The preliminary scale was administered to a nationally representative sample of 795 students in elementary, middle, and high schools across South Korea. Then, final 15 items were selected according to the reliability test results. The final scale consisted of four subdomains: (1) disturbance of adaptive functions, (2) virtual life orientation, (3) withdrawal, and (4) tolerance. The final scale indicated a high reliability with Cronbach''s α of .880. Support for the scale''s criterion validity has been demonstrated by its relationship to the internet addiction scale, KS-II (r  =  .49). For the analysis of construct validity, we tested the Structural Equation Model. The results showed the four-factor structure to be valid (NFI  =  .943, TLI  =  .902, CFI  =  .902, RMSEA  =  .034). Smartphone addiction is gaining a greater spotlight as possibly a new form of addiction along with internet addiction. The SAPS appears to be a reliable and valid diagnostic scale for screening adolescents who may be at risk of smartphone addiction. Further implications and limitations are discussed.  相似文献   

16.
17.
We describe an ontology for cell types that covers the prokaryotic, fungal, animal and plant worlds. It includes over 680 cell types. These cell types are classified under several generic categories and are organized as a directed acyclic graph. The ontology is available in the formats adopted by the Open Biological Ontologies umbrella and is designed to be used in the context of model organism genome and other biological databases. The ontology is freely available at http://obo.sourceforge.net/ and can be viewed using standard ontology visualization tools such as OBO-Edit and COBrA.  相似文献   

18.
OBO-Edit--an ontology editor for biologists   总被引:3,自引:0,他引:3  
OBO-Edit is an open source, platform-independent ontology editor developed and maintained by the Gene Ontology Consortium. Implemented in Java, OBO-Edit uses a graph-oriented approach to display and edit ontologies. OBO-Edit is particularly valuable for viewing and editing biomedical ontologies. Availability: https://sourceforge.net/project/showfiles.php?group_id=36855.  相似文献   

19.
We describe an ontology for cell types that covers the prokaryotic, fungal, animal and plant worlds. It includes over 680 cell types. These cell types are classified under several generic categories and are organized as a directed acyclic graph. The ontology is available in the formats adopted by the Open Biological Ontologies umbrella and is designed to be used in the context of model organism genome and other biological databases. The ontology is freely available at and can be viewed using standard ontology visualization tools such as OBO-Edit and COBrA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号