首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Immature zygotic embryo has been the widely used explant source to develop embryogenic callus lines, cell suspensions and protoplasts for transformation of cereal crops including maize, wheat, rice, oat, barley, sorghum, and millet. However, the lack of competence of immature embryos in certain elite lines is still a barrier to rontine production of transgenic cereal crops in certain commercial cultivars. In addition, a great deal of effort is required to produce immature embryos, manipulate cultures, of immature embryos or their cell suspensions, and cryoperserve cultures for further use. In addition, undifferentiated cells may have reduced regenerability after a few months, of in vitro culture. Alternative explants and regeneration systems for efficient transformation of cereal crops are needed to avoid or reduce the above limitations. During the past decade, scientists have successfully manipulated the shoot apical meristerms from seedlings of maize oat, sorghum, millet, wheat, and barley in an effort to develop a less genetype-dependent and efficient cereal regneration system that can be maintained in vitro for long pertiods of time without the need for cryopreservation. Furthermore, apical mesistem regeneration systems were used to stably transform maize, wheat, rice, oat, barley, sorghum, and millet.  相似文献   

2.
中国禾谷类作物野生近缘植物在育种中的利用   总被引:8,自引:1,他引:7  
中国主要禾谷类作物有水稻、小麦、大麦、燕麦、玉米、高粱、粟、黍稷,它们的野生近缘植物在中国禾谷类作物育种中得到了较好的利用,不仅拓宽了作物的遗传基础,而且培育出优良品种在生产上大面积推广,在提高粮食产量中起到了重要作用.  相似文献   

3.
Brazil is blast disease hot spot because severe epidemics have occurred among wheat, triticale, rye, barley and oat crops. Although the first outbreak of barley blast appeared in 1998, little information is available. Therefore, this study aimed to examine host range, mating type composition and population structure of Magnaporthe sp. from a single barley field in São Paulo, Brazil. To examine pathogenicity, 25 Magnaporthe isolates were inoculated on five, three, two and two cultivars of barley, wheat, oat and rice, respectively, and one cultivar each of rye, corn, sorghum, triticale and certain weeds (Cenchrus echinatus, Setaria geniculata, Brachiaria plantaginea and Eleusine indica). Mating type distribution of 33 isolates was investigated by molecular tools. The genotypic divergence of 41 barley and five wheat isolates was investigated by 15 random amplified polymorphic DNA primers and unweighted pair group method with arithmetic mean. The host range of the barley blast pathogen included wheat, oat, rye and triticale but not rice and weeds. Sexual reproduction appeared to not be involved in the high genotypic diversity because only a single isolate, MAT1‐2, was identified. The majority of barley isolates clustered together with wheat blast, except for four, suggesting a different origin.  相似文献   

4.
We described earlier the purification and properties of a protein (tritin) from wheat that enzymatically inhibits translation in cell-free systems from animals but not plants. In this report, we have examined 11 additional grains (Family Gramineae) and three other seeds for the presence of tritin-like proteins. In addition to wheat species, barley, oats, rye, triticale and corn were found to be sources of inhibitor; no inhibitor could be detected in rice, millet, sesame, alfalfa, mung bean or common bean seeds. The inhibitors from barley and rye were purified and found to differ from tritin with respect to heat inactivation, although they are similar to tritin with respect to molecular weight, behavior during purification and specific activity. The inhibitor from corn was purified and found to differ from tritin with respect to heat inactivation and molecular weight, although it is similar to tritin in behavior during purification and specific activity. These inhibitors constitute 2–17% of the total extractable protein in these grain s. Thus, wheat, barley, rye and corn can serve as convenient sources of a family of closely related inhibitors of protein synthesis which, when conjugated with lectins, antibodies, or hormones, could prove useful as chimeric toxins.  相似文献   

5.
Male Sterility and Anther Wall Structure in Copper-deficient Plants   总被引:5,自引:0,他引:5  
DELL  B. 《Annals of botany》1981,48(5):599-608
Anther development and pollen sterility were followed in plantsof wheat, oat, barley, sweetcorn, sunflower, petunia and subterraneumclover grown at a range of copper supplies. Copper-deficientplants had increased pollen sterility. Lignified wall thickenings were reduced or absent in the endotheciaof anthers from Cu-deficient plants. Reduced seed set may resultboth from reduced pollen fertility or failure of the stomiato rupture due to decreased lignification of anther walls. Triticum aestivum L., wheat, Hordeum vulgare L., barley, Avena sativa L., oat, Zea mays L., corn, sweetcorn, maize, Helianthus annuus L., sunflower, Petunia hybrida L., Trifolium subterraneum L., subterranean clover, male sterility, anther development, copper deficiency  相似文献   

6.
六种寄主植物对二点叶蝉生长发育和繁殖的影响   总被引:11,自引:0,他引:11  
在25℃恒温条件下,以盆栽玉米、小麦、高粱、水稻、谷子、大麦及虮子草为食料,研究了食物对二点叶蝉实验种群生长发育及繁殖的影响.结果表明,二点叶蝉在虮子草上不能完成世代发育.在其余6种寄主植物上各虫态的发育历期、存活率、雌成虫寿命及单雌平均产卵量存在显著差异.从卵到若虫期的发育历期在高粱上最短(24.1d),玉米上次之(24.2d),小麦上最长(25.5d);取食水稻时。若虫的存活率(40.8%)最低,成虫寿命最短(12.2d),单雌平均产卵量(12.3粒)也显著低于其它5种寄主植物.用生命表参数综合评价表明,6种寄主植物中,谷子和玉米最适合二点叶蝉生长发育及繁殖。其次分别为高粱、大麦、小麦、水稻。  相似文献   

7.
The plant growth regulator (–)-jasmonic acid (JA) and its stereoisomer (+)-7-iso-jasmonic acid (7-iso-JA) have been isolated from young fruits ofVicia faba L. and identified by TLC, GC, GC-MS, and chemical transformation. Different isolation procedures gave different ratios of JA/7-iso-JA because of partial isomerization of (+)-7-iso-JA to (–)-JA. Optimal conditions, excluding artificial isomerization, were checked by the addition of [U-14C]-7-iso-JA. The naturally occurring isomer ratio was determined to be 65% (–)-JA: 35% (+)-7-iso-JA in immature broad bean fruits. The biological activities of both isomers of JA have been studied using several bioassays. Growth of wheat and GA3-stimulated dwarf rice seedlings is inhibited more effectively by (+)-7-iso-JA than by (–)-JA. In growing seedlings of barley and oat, both isomers caused a senescence-like bleaching effect characterized by chlorophyll and carotenoid decrease. The free acids are more active than their methyl esters in intact barley plants in contrast to results obtained in leaf segment tests. Highest activity was obtained with (+)-7-iso-JA.  相似文献   

8.
J. A. Bietz 《Biochemical genetics》1982,20(11-12):1039-1053
Prolamin mixtures were isolated from oats, rice, normal and high-lysine sorghum, two varieties of pearl millet, two strains of teosinte, and gamma grass and subjected to NH2-terminal amino acid sequence determinations. In each case (except for rice, whose prolamins apparently have blocked or unavailable NH2-terminal residues), primarily a single sequence was observed despite significant heterogeneity, suggesting that prolamin homology in each cereal arose through duplication and mutation of a single ancestral gene. Comparisons were then made to prolamin sequences previously determined for wheat, corn, barley, and rye. Within genera, different varieties or subspecies exhibited few differences, but more distantly related genera, subtribes, and tribes showed increasingly large differences. Within the subfamily Festucoideae, no homology was apparent between prolamins of oats and those of the subtribe Triticinae (including wheat, rye, and barley, for which prolamin homology was previously demonstrated). Within the subfamily Panicoideae, corn was shown to be closely related to teosinte but more distantly to Tripsacum. Sorghum was shown to have diverged less from corn than had millet. These comparisons demonstrate that prolamin sequence analyses can successfully predict and clarify evolutionary relationships of cereals.  相似文献   

9.
Aspergillus flavus, Alternaria alternata and Fusarium oxysporum were the pathogenic fungi most reduced cereal (barley, sorghum and wheat) seedlings. The pathogens have the ability to produce aflatoxin B1 and G1, diacetoxyscirpenol, kojic acid and tenuazonic acid that reduced seedling viability. The inhibition dose for 50% reduction (LD50) was recorded by aflatoxins at 0.83 mg L-1 for barley, 1.74 mg L-1 for wheat and 2.75 mg L-1 for sorghum. Diacetoxyscirpenol produced its inhibition at 1.26 mg L-1 for barley, 3.98 mg L-1 for wheat and 10 mg L-1 for sorghum. Kojic acid induced 50% inhibition at 63 mg L-1 for barley, 105 mg L-1 for wheat and 251 mg L-1 for sorghum. However, tenuazonic acid was less toxic where the toxicity ranged between 79–550 mg L-1. The germination inhibition was more pronounced in barley followed by wheat and was negligible in sorghum for all tested mycotoxins. This inhibition was attributed to the reduction in the seedling amylase activity, where amylase was also reduced in the same trend: barley > wheat > sorghum. Grain treated with carboxin-captan and thiophanatemethyl-thiram at 1 g kg-1 grain increased the seedlings vigour of wheat in sterilized soil by 45 and 22%, barley by 24 and 33% and sorghum by 15 and 30%, respectively. These fungicides also had a positive effect on cereal when the soil was inoculated with A. flavus, A. alternata and F. oxysporum, but the improvement was still below normal. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
W. G. Langenberg 《Protoplasma》1978,94(1-2):167-173
Summary Brief fixation in a mixture of glutaraldehyde and OsO4 caused stacked chloroplast grana membranes in leaf cells of wheat, barley, tobacco, maize, cowpea, pigweed or bean plants to distend and vesiculate. Fixation with glutaraldehyde followed by OsO4 prevented this fixation artifact. In a fixative mixture, OsO4 apparently reacted with cell contents before glutaraldehyde.  相似文献   

11.
The development of infection structures, derived from urediospores of Puccinia recondita f.sp. trilici in nearisogenic lines of susceptible and resistant wheat, and in non-hosts (viz. maize, oat, sorghum and barley), was examined by fluorescence microscopy and scanning electron microscopy (SEM). The infection structure formation on and in five cereal species follows a similar pattern. In sorghum, fungal development is arrested at the stage of substomatal vesicle formation, while, in maize, most fungal structures collapse during the stage of primary hypha development. By contrast, in wheat, barley and oat, the fungus forms many branched infection hyphae and haustorial mother cells.  相似文献   

12.
Concentration of Indole-3-acetic Acid and Its Derivatives in Plants   总被引:44,自引:39,他引:5       下载免费PDF全文
Seeds of oat, coconut, soybean, sunflower, rice, millet, kidney bean, buckwheat, wheat, and corn and vegetative tissue of oat, pea, and corn were assayed for free indole-3-acetic acid (IAA), esterified IAA, and peptidyl IAA. Three conclusions were drawn: (a) all plant tissues examined contained most of their IAA as derivatives, either esterified or as a peptide; (b) the cereal grains examined contained mainly ester IAA; (c) the legume seeds examined contained mainly peptidyl IAA. Errors in analysis of free and bound IAA are discussed.  相似文献   

13.
Data for the maximum carboxylation velocity of ribulose-1,5-biosphosphate carboxylase, Vm, and the maximum rate of whole-chain electron transport, Jm, were calculated according to a photosynthesis model from the CO2 response and the light response of CO2 uptake measured on ears of wheat (Triticum aestivum L. cv. Arkas), oat (Avena sativa L. cv. Lorenz), and barley (Hordeum vulgare L. cv. Aramir). The ratio Jm/Vm is lower in glumes of oat and awns of barley than it is in the bracts of wheat and in the lemmas and paleae of oat and barley. Light-microscopy studies revealed, in glumes and lemmas of wheat and in the lemmas of oat and barley, a second type of photosynthesizing cell which, in analogy to the Kranz anatomy of C4 plants, can be designated as a bundle-sheath cell. In wheat ears, the CO2-compensation point (in the absence of dissimilative respiration) is between those that are typical for C3 and C4 plants.A model of the CO2 uptake in C3–C4 intermediate plants proposed by Peisker (1986, Plant Cell Environ. 9, 627–635) is applied to recalculate the initial slopes of the A(pc) curves (net photosynthesis rate versus intercellular partial pressure of CO2) under the assumptions that the Jm/Vm ratio for all organs investigated equals the value found in glumes of oat and awns of barley, and that ribulose-1,5-bisphosphate carboxylase is redistributed from mesophyll to bundle-sheath cells. The results closely match the measured values. As a consequence, all bracts of wheat ears and the inner bracts of oat and barley ears are likely to represent a C3–C4 intermediate type, while glumes of oat and awns of barley represent the C3 type.Abbreviations A net photosynthesis rate (mol·m-2·s-1) - Jm maximum rate of whole-chain electron transport (mol·e-·m-2·s-1) - pc (bar) intercellular partial pressure of CO2 - PEP phosphoenolpyruvate - PPFD photosynthetic photon flux density (mol quanta·m-2·s-1) - RuBPCase ribulose bisphosphate carboxylase/oxygenase - RuBP ribulose bisphosphate - Vm maximum carboxylation velocity of RuBPCase (mol·m-2·s-1) - T* CO2 compensation point in the absence of dissimilative respiration (bar)  相似文献   

14.
A field experiment was conducted using15N methodology to study the effect of cultivation of faba bean (Vicia faba L.), pea (Pisum sativum L.) and barley (Hordeum vulgare L.) on the N status of soil and their residual N effect on two succeeding cereals (sorghum (Sorghum vulgare) followed by barley). Faba bean, pea and barley took up 29.6, 34.5 and 53.0 kg N ha–1 from the soil, but returned to soil through roots only 11.3, 10.8 and 5.7 kg N ha–1, respectively. Hence, removal of faba bean, pea and barley straw resulted in a N-balance of about –18, –24, and –47 kg ha–1 respectively. A soil nitrogen conserving effect was observed following the cultivation of faba bean and pea compared to barley which was of the order of 23 and 18 kg N ha–1, respectively. Cultivation of legumes resulted in a significantly higher AN value of the soil compared to barley. However, the AN of the soil following fallow was significantly higher than following legumes, implying that the cultivation of the legumes had depleted the soil less than barley but had not added to the soil N compared to the fallow. The beneficial effect of legume cropping also was reflected in the N yield and dry matter production of the succeeding crops. Cultivation of legumes led to a greater exploitation of soil N by the succeeding crops. Hence, appreciable yield increases observed in the succeeding crops following legumes compared to cereal were due to a N-conserving effect, carry-over of N from the legume residue and to greater uptake of soil N by the succeeding crops when previously cropped to legumes.  相似文献   

15.
Seeds of barley (Hordeum vulgare L.) and mung bean (Vigna radiata(L.) Wilczek), with orthodox seed storage behaviour, were imbibedfor between 8 h and 96 h at 15 °C and 25 °C, respectively,while barley seeds were also maintained in moist aerated storageat 15 °C for 14 d. These seeds and seedlings, together withcontrols, were then dried to various moisture contents between3% and 16% (wet basis) and hermetically stored for six monthsat —20°C, 0°C or 15°C. In both species, neitherdesiccation nor subsequent hermetic storage of the control lotsresulted in loss in viability. The results for barley seedsimbibed for 24 h were similar to the control, but desiccationsensitivity increased progressively with duration of imbibitionbeyond 24 h in barley or 8 h in mung bean; these treatmentsalso reduced the longevity of the surviving seeds in air-drystorage. Loss in viability in barley imbibed for 48 h was mostrapid at the two extreme seed storage moisture contents of 3·6%and 14·3%, and in both these cases was more rapid at15 °C than at cooler temperatures. Similarly, for mung beanimbibed for 8 h, loss in viability was most rapid at the lowest(4·3%) moisture content, but in this case it was morerapid at –20 °C than at warmer temperatures. Thus,these results for the storage of previously imbibed orthodoxseeds conform with the main features of intermediate seed storagebehaviour Key words: Barley, Hordeum vulgare L., mung bean, Vigna radiata (L.) Wilczek, desiccation sensitivity, seed longevity, seed storage behaviour  相似文献   

16.
Galactose inhibited auxin-induced cell elongation of oat coleoptiles but not that of azuki bean stems. Galactose decreased the level of UDP-glucose in oat coleoptiles but not in azuki bean hypocotyls. Glucose-1-phosphate uridyltransferase activity (EC 2.7.7.9), in a crude extract from oat coleoptiles, was competitively inhibited by galactose-1-phosphate, but that enzyme from azuki bean was not. A correlation was found between inhibition of growth by galactose and inhibition of glucose-1-phosphate uridyltransferase activity by galactose-1-phosphate using oat, wheat, maize, barley, azuki bean, pea, mung bean, and cucumber plants. Thus, it is concluded that galactose is converted into galactose-1-phosphate, which interferes with UDP-glucose formation as an analog of glucose-1-phosphate.  相似文献   

17.
OPIK  HELGI 《Annals of botany》1985,56(4):453-466
Completely anhydrous fixation with acrolein vapour or osmiumtetroxide vapour was applied to tissues of air-dry seeds: thecoleoptile of wheat (Trilicum aestivum), and plumule and radicleof mung bean (Vigna radiata). Great shrinkage of cells and organelleswas noted, but all the usual organelles could be identified,except for Golgi bodies and (in most cases) ribosomes. The endoplasmicreticulum was very abundant and endoplasmic reticulum tubuleswere closely associated with the storage organelles, namelylipid bodies in the wheat coleoptile, and protein bodies inthe mung bean embryo axis. Aqueous fixation resulted in considerabledistortion of cellular structure. Triticum aestivum L., wheat, Vigna radiata L., mung bean, seed, fine structure, anhydrous fixation  相似文献   

18.
Conditions for the efficient conversion of commercial RNA to nucleoside 5′-monophosphate by means of a phosphodiesterase in malt sprouts have been determined. A comparison of the enzyme content of the rootlets, stems, and kernels of various plant seedlings, including barley, rye, oat, wheat, rice, and beans shows maximum amounts in the rootlets, and minimum quantities in the ungerminated kernels. Of all the seedlings tested, (mung bean, soy bean, oat, wheat, rice, barley) barley gave the highest conversion of RNA to 5′-nucleotides. Commercial malt sprouts prepared from 6 different malted barleys including 2-rowed and 6-rowed samples all showed about the same amount of phosphodiesterase content. Besides phosphodiesterase, other enzymes capable of hydrolyzing RNA and 5′-nucleotides were found in sprouts. These included 3′-phosphodiesterases, 5′-nucleotidases, and nucleosidases. By carefully pretreating both extracts and the solid sprouts at elevated temperatures for a limited time and by the addition of minimum amounts of Zn+2, the action of these undesirable enzymes was either effectively destroyed or minimized so that the production of 5′-nucleotides was maximized. It was found that suspensions of appropriately washed and treated barley malt rootlets are substantially more effective than aqueous extracts for converting RNA to 5′-nucleotides.  相似文献   

19.
D. Curtin  G. Wen 《Plant and Soil》2004,267(1-2):109-115
Plants that remove an excess of cations over anions may cause soil acidification. The acidification potential of plants has been evaluated using solution culture techniques, but the influence of ionic composition of the medium on the plant cation-anion balance remains unclear. Our objective was to determine how electrolyte concentration and salt type affect the cation- anion balance of two test plants [barley (Hordeum vulgare L.) and kochia (Kochia scoparia L. Schrad.)]. Seedlings were grown in sand culture and irrigated with nutrient solution (Hoagland’s solution), which was adjusted to a range of electrolyte concentrations (target electrical conductivity of 7.5, 17.5 and 27.5 dS m−1) using either chloride or sulphate salts. Increase in electrolyte concentration reduced yield of kochia, a salt-tolerant plant, by up to 38%. Total cation (Ca + Mg + K + Na) equivalents in kochia exceeded those of anions (Cl + S + P + NO3) by 250 to 280 cmolc kg−1 of dry matter. Electrolyte concentration had no effect on the cation-anion balance of kochia, but excess cation values were significantly greater in the sulphate than in the chloride system. Kochia had a large content of water-soluble oxalate (194 to 226 cmolc kg−1), which was linearly related to the excess cation content. Growth of barley was severely restricted at the intermediate and high electrolyte concentrations. Cations exceeded anions by 21 to 59 cmolc kg−1 of barley dry matter. Excess cation content was greater in the sulphate than in the chloride medium, but electrolyte concentration did not have a consistent effect on the cation-anion balance. The small amounts of oxalate found in barley (0.9 to 2.6 cmolc kg−1) were insufficient to balance the cation excess.  相似文献   

20.
The content of the minor class of phospholipids, N-acylphosphatidylethanolamines (NAPEs) in mature seeds of cultivated plants: kidney bean (Phaseolus vulgaris L.), soybean (Glycine max (L.) Merr.), soft spring wheat (Triticum aestivum L. emend. Fiori et Paol), barley (Hordeum vulgare L.), and oat (Avena sativa L.), and the products of technological processing of grain cultures (floor, bran) was studied. Reliable NAPE identification was performed by a comparison of their chromatographic mobility with the marker NAPE sample from wheat flour and synthetic phosphatidylmethanol, and also using specific reagents. Kidney bean cv. Shchedraya seeds contained the highest amount of NAPEs. In legumes, the content of NAPEs varied not only in different species but also in different cultivars of a single species. In cereals, the highest NAPE content was detected in the barley seeds and best quality wheat flour. The content of NAPEs in cereal seeds was less variable than in legumes. NAPE quantification showed that accumulation of this phospholipid class occurred in parallel with accumulation of total phospholipids in seeds. The relation between NAPE content and the processes of seed development and their lipid composition is discussed. The seeds and products best suitable for NAPE isolation are recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号