首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The deodorizing mechanism of (-)-epigallocatechin gallate (EGCg), the main constituent of a green tea extract, against methyl mercaptan (CH3SH) was investigated. EGCg showed deodorizing activity against CH3SH by a chemical reaction between EGCg and CH3SH. The non-volatile reaction products were identified to be compounds introducing a methylthio and/or a methylsulfinyl group into the B ring of EGCg, and gaseous oxygen was necessary for deodorizing activity. From these results, it was assumed that the deodorizing mechanism of EGCg was due to the addition of a methylthio group to the ortho-quinone generated by atmospheric oxygen. It was also found that secondary compounds produced by the reaction between EGCg and CH3SH had a stronger deodorizing activity than that of EGCg itself.  相似文献   

2.
We investigated the molecular mechanisms involved in the angiotensin‐converting enzyme (ACE) inhibition by (?)‐epigallocatechin‐3‐gallate (EGCg), a major tea catechin. EGCg inhibited both the ACE activity in the lysate of human colorectal cancer cells and human recombinant ACE (rh‐ACE) in a dose‐dependent manner. Co‐incubation with zinc sulfate showed no influence on the rh‐ACE inhibition by EGCg, whereas it completely counteracted the inhibitory effect of ethylenediaminetetraacetic acid, a chelating‐type ACE inhibitor. Although hydrogen peroxide was produced by the autoxidation of EGCg, hydrogen peroxide itself had little effect on the ACE activity. Conversely, the co‐incubation of EGCg with borate or ascorbic acid significantly diminished the EGCg inhibition. A redox‐cycling staining experiment revealed that rh‐ACE was covalently modified by EGCg. A Lineweaver–Burk plot analysis indicated that EGCg inhibited the ACE activity in a non‐competitive manner. These results suggested that EGCg might allosterically inhibit the ACE activity through oxidative conversion into an electrophilic quinone.  相似文献   

3.
Mouse embryonic fibroblast (MEF) cells prepared from transgenic mice overexpressing a cancer-specific and growth-related cell surface NADH oxidase with protein disulfide-thiol interchange activity grew at rates approximately twice those of wild-type embryonic fibroblast cells. Growth of transgenic MEF cells overexpressing tNOX was inhibited by low concentrations of the green tea catechin (-)-epigallocatechin-3-gallate (EGCg) or the synthetic isoflavene phenoxodiol. Both are putative tNOX-targeted inhibitors with anti-cancer activity. With both EGCg and phenoxodiol, growth inhibition was followed after about 48 h by apoptosis. Growth of wild-type mouse fibroblast cells from the same strain was unaffected by EGCg and phenoxodiol and neither compound induced apoptosis even at concentrations 100-1,000-fold higher than those that resulted in apoptotic death in the transgenic MEF cells. The findings validate earlier reports of evidence for tNOX presence as contributing to unregulated growth of cancer cells as well as the previous identification of the tNOX protein as the molecular target for the anti-cancer activities attributed to both EGCg and phenoxodiol. The expression of tNOX emerges as both necessary and sufficient to account for the cancer cell-specific growth inhibitions by both EGCg and phenoxodiol.  相似文献   

4.
Since green tea catechins are known to have antimicrobial activity against a variety of microorganisms, their possible effects on Helicobacter pylori in combination with antibiotics were examined. Fifty-six clinical isolates of H. pylori, including 19 isolates highly resistant to metronidazole (MTZ) and/or clarithromycin (CLR), were used to determine in vitro sensitivity to tea catechins. The MIC90 of both epigallocatechin gallate (EGCg) and epicatechin gallate (ECg) was 100 microg/ml. However, other tea catechins tested did not show any anti-H. pylori activity. Highly antibiotic-resistant clinical isolates showed a similar sensitivity to both EGCg and ECg. The kinetic study of antibacterial activity in liquid cultures revealed a relatively slow but strong activity on the growth of H. pylori. In combination with sub-MIC of amoxicillin (AMX), the antibacterial activity of AMX was significantly enhanced by the presence of EGCg. To estimate the general combination effect between EGCg and other antibiotics, such as MTZ and CLR, on the antibacterial activity against clinical isolates, the fraction inhibitory concentration (FIC) was determined by checkerboard study. The FIC indexes showed additive effects between EGCg and antibiotics tested. These results indicatethat EGCg may be a valuable therapeutic agent against H. pylori infection.  相似文献   

5.
Capsaicin and the principal green tea catechin, (-)-epigallocatechin-3-gallate (EGCg), target tNOX, a tumor (cancer)-specific surface hydroquinone (NADH) oxidase with protein disulfide-thiol interchange activity (ECTO-NOX protein). Accordingly vector-forced over expression of tNOX in MCF-10A mammary epithelia or COS cells that lack tNOX or in COS cells that underexpress tNOX enhanced the susceptibility of growth and apoptosis to both EGCg and capsaicin. Additionally, the tNOX-transfected MCF-10A cells proliferated in Matrigel, a measure of invasiveness. In contrast, oligomeric antisense tNOX DNA abrogated growth inhibition by EGCg and capsaicin and reduced anchorage-dependent growth of HeLa (human cervical carcinoma) cells that naturally overexpress tNOX. The findings show cell surface expression of tNOX as both necessary and sufficient for the cellular anticancer activities attributed to both EGCg and capsaicin.  相似文献   

6.
We examined tea extract, (-) epigallocatechin gallate (EGCg) and theaflavin digallate (TF3) for their antibacterial and bactericidal activities against methicillin resistant Staphylococcus aureus (MRSA) and food poisoning strains of S. aureus. Twenty percent tea extract (50 microliters), EGCg (63 micrograms) and TF3 (125 micrograms) added to one ml of culture medium each inhibited the growth of all strains of MRSA and food poisoning S. aureus tested. Tea extract showed also a bactericidal activity against MRSA even at the same concentration of as in ordinarily brewed tea. EGCg at a concentration of 250 micrograms/ml showed a bactericidal activity against MRSA but not against food poisoning S. aureus, but at 500 micrograms/ml reduced markedly the viable number within 48h. These results suggest that tea and catechin can be used as prophylactic agents against MRSA infection.  相似文献   

7.
The flavonoids (-)-epigallocatechin-3-gallate (EGCg) and (-)-epicatechin-3-gallate (ECg) are major components of green tea and show numerous biological effects. We investigated the glucuronidation of these compounds and of quercetin by microsomes. Quercetin was almost fully glucuronidated by liver microsomes after 3 h, whereas ECg and ECGg were conjugated to a lesser extent ([Formula: See Text] and [Formula: See Text] respectively). The intestinal microsomes also glucuronidated quercetin much more efficiently than ECg and EGCg. Although the rates were lower than quercetin, intestinal microsomes exhibited higher activity on the galloyl group of ECg and EGCg compared to the flavonoid ring, whereas hepatic glucuronidation was higher on the flavonoid ring of EGCg and ECg compared to the galloyl groups. The low glucuronidation rates could partially explain why these flavanols are present in plasma as unconjugated forms.  相似文献   

8.
The flavonoids (-)-epigallocatechin-3-gallate (EGCg) and (-)-epicatechin-3-gallate (ECg) are major components of green tea and show numerous biological effects. We investigated the glucuronidation of these compounds and of quercetin by microsomes. Quercetin was almost fully glucuronidated by liver microsomes after 3 h, whereas ECg and ECGg were conjugated to a lesser extent ([Formula: See Text] and [Formula: See Text] respectively). The intestinal microsomes also glucuronidated quercetin much more efficiently than ECg and EGCg. Although the rates were lower than quercetin, intestinal microsomes exhibited higher activity on the galloyl group of ECg and EGCg compared to the flavonoid ring, whereas hepatic glucuronidation was higher on the flavonoid ring of EGCg and ECg compared to the galloyl groups. The low glucuronidation rates could partially explain why these flavanols are present in plasma as unconjugated forms.  相似文献   

9.
Since green tea catechins are known to have antimicrobial activity against a variety of microorganisms, their possible effects on Helicobacter pylori in combination with antibiotics were examined. Fifty-six clinical isolates of H. pylori, including 19 isolates highly resistant to metronidazole (MTZ) and/or clarithromycin (CLR), were used to determine in vitro sensitivity to tea catechins. The MIC90 of both epigallocatechin gallate (EGCg) and epicatechin gallate (ECg) was 100 Î&frac;g/ml. However, other tea catechins tested did not show any anti-H. pylori activity. Highly antibiotic-resistant clinical isolates showed a similar sensitivity to both EGCg and ECg. The kinetic study of antibacterial activity in liquid cultures revealed a relatively slow but strong activity on the growth of H. pylori. In combination with sub-MIC of amoxicillin (AMX), the antibacterial activity of AMX was significantly enhanced by the presence of EGCg. To estimate the general combination effect between EGCg and other antibiotics, such as MTZ and CLR, on the antibacterial activity against clinical isolates, the fraction inhibitory concentration (FIC) was determined by checkerboard study. The FIC indexes showed additive effects between EGCg and antibiotics tested. These results indicate that EGCg may be a valuable therapeutic agent against H. pylori infection.Received: 2 September 2002 / Accepted: 12 November 2002  相似文献   

10.
Polyphenolic compounds derived from tea catechins were examined for apoptosis-inducing activity in human histiolytic lymphoma U937 cells. (-)-Epigallocatechin gallate, theasinensin D, compound OH-5, theaflavin, and theaflavin digallate induced apoptosis as evidenced by DNA ladder formation, its inhibition by a caspase inhibitor, and chromatin condensation. Theasinensin D was the most potent inducer and the data suggest the importance of the number and three dimensional localization of their phenolic groups in this activity. These apoptosis-inducible compounds may be useful as a cancer chemopreventive and chemotherapeutic agent.  相似文献   

11.
The protective effects of (-)-epigallocatechin-3-gallate (EGCg) or the C-2 epimer, (-)-gallocatechin-3-gallate (GCg), afforded by their antioxidative activity among green tea catechins were investigated in perfused guinea-pig Langendorff hearts subjected to ischemia and reperfusion. The recovery (%) of the left ventricular developed pressure from ischemia by reperfusion was 34.4% in the control, while in the presence of EGCg (3x10(-5) M) or GCg (3x10(-6) M, a more diluted concentration than that of EGCg), it led to a maximal increase of 78.4% or 76.2%, consistent with a significant preservative effect on the tissue level of ATP at the end of ischemia or reperfusion. In the perfused preparation of mitochondria, EGCg (10(-5) M) inhibited mitochondrial Ca(2+) elevation by changes in the Ca(2+) content or the acidification of perfusate, similarly to findings with cyclosporin A, a well known inhibitor of the mitochondrial permeability transition pore. By in vitro electron paramagnetic resonance (EPR), EGCg or GCg was found to directly quench the activity of active oxygen radicals, with the strongest activity in tea catechins. EGCg or GCg decreased the caspase-3 activity induced apoptosis. Therefore, it is concluded that the beneficial effects of EGCg or GCg play an important role in ischemia-reperfusion hearts in close relation with nitric oxide (NO), active oxygen radicals and biological redox systems in mitochondria.  相似文献   

12.
Epigallocatechin-3-O-gallate (EGCg) and related polyphenolic compounds found in tea are known to have antioxidative activities. However, they also have pro-oxidative activities such as generation of hydrogen peroxide. In this report, we investigated the effect on cells and showed the potential usage of EGCg in cell preservation. H(2)O(2) was generated from EGCg at concentrations of more than 300 microg/mL for 6 h at 37 degrees C, and high cytotoxicity for L929 cells were shown. In contrast, in the presence of 1 microg/mL catalase, the amount of generated H(2)O(2) was significantly low and cytotoxicity decreased markedly. This indicates that catalase eliminated H(2)O(2) generated by degradation of EGCg. Although H(2)O(2) generation was prevented, L929 cell proliferation was slightly inhibited in proportion to the concentrations of EGCg. L929 was exposed able to be 300 microg/mL to EGCg and 1 microg/mL catalase for maximum 18 days. EGCg inhibited the growth of L929 cells, and cell proliferation was restarted immediately after medium change for removing EGCg. We concluded that EGCg had a reversible growth inhibition when H(2)O(2) was eliminated from cell cultures.  相似文献   

13.
The inhibition of α-amylase from human saliva by polyphenolic components of tea and its specificity was investigated in vitro. Four kinds of green tea catechins, and their isomers and four kinds of their dimeric compounds (theaflavins) produced oxidatively during black tea production were isolated. They were (?)-epicatechin (EC), (?)-epigallocatechin (EGC), (?)-epicatechin gallate (ECg), (?)-epigallocatechin gallate (EGCg), (?)-catechin (C), (?)-gallocatechin (GC), (?)-catechin gallate (Cg), (?)-gallocatechin gallate (GCg), theaflavin (TF1), theaflavin monogallates (TF2A and TF2B), and theaflavin digallate (TF3). Among the samples tested, EC, EGC, and their isomers did not have significant effects on the activity of α-amylase. All the other samples were potent inhibitors and the inhibitory effects were in the order of TF3>TF2A>TF2B>TFl>Cg> GCg > ECg > EGCg. The inhibitory patterns were noncompetitive except for TF3.  相似文献   

14.
A method for analyzing the EGCg concentration in human serum was developed by using high-performance liquid chromatography with electrochemical detection. EGCg was detected in human serum after the ingestion of 5 g of green tea powder (matsu-cha) dissolved in 200 ml of hot water. The concentration of EGCg in the serum reached the highest level about 2 h after ingesting the green tea, and then decreased.  相似文献   

15.
Tea catechins, (–)-epigallocatechin-3-gallate (EGCg) and (–)-epigallocatechin (EGC), have been reported to suppress oxidation of plasma low density lipoprotein (LDL) in vitro. If dietary catechins can be efficiently incorporated into human blood plasma, anti-atherosclerotic effects in preventing oxidative modification of LDL would be expected. In this study, a newly developed chemiluminescence detection-high pressure liquid chromatography (CL-HPLC) method for measuring plasma catechins was used and the incorporation of EGCg and EGC into human plasma was investigated. Healthy subjects orally ingested 3, 5, or 7 capsules of green tea extract (corresponding to 225, 375, and 525 mg EGCg and 7.5, 12.5, and 17.5 mg EGC, respectively). The plasma EGCg and EGC concentrations before the administration were all below the detection limit (< 2 pmol/ml), but 90 min after, significantly and dose-dependently increased to 657, 4300, and 4410 pmol EGCg/ml, and 35, 144, and 255 pmol EGC/ml, in the subjects who received 3, 5, and 7 capsules, respectively. Both EGCg and EGC levels detected in plasma corresponded to 0.2–2.0% of the ingested amount. Catechin intake had no effect on the basal level of endogenous antioxidants (α-tocopherol, β-carotene, and lycopene) or of lipids in plasma. These results suggested that drinking green tea daily would contribute to maintain plasma catechin levels sufficient to exert antioxidant activity against oxidative modification of lipoproteins in blood circulation systems.  相似文献   

16.
High molecular weight fractions of green tea, black tea, oolong tea, and pu-erh tea were found to induce apoptosis in human monoblastic leukemia U937 cells by examination of their ability to inhibit cell proliferation and to induce apoptotic body formation and DNA ladder formation. These tea fractions were also shown to induce apoptosis in stomach cancer MKN-45 cells. In addition to known antitumor-promoting activity of tea high molecular weight fractions, their apoptosis-inducing activity may contribute to cancer chemopreventive effects of tea.  相似文献   

17.
We examined tea extract, (-) epigallocatechin gallate (EGCg) and theaflavin digallate (TF3) for their antifungal and fungicidal activities against Trichophyton mentagrophytes, T. rubrum, Candida albicans and Cryptococcus neoformans. Tea extract (2.5%) inhibited completely the growth of both T. mentagrophytes and T. rubrum. EGCg at 2.5 mg/ml failed to inhibit their growth, whereas TF3 at 0.5 mg/ml inhibited the growth. EGCg (1mg/ml) showed no fungicidal activity against Trichophyton. TF3 (1mg/ml) killed Trichophyton by a long time contact (72-96 hrs). Tea extract showed a fungicidal activity against Trichophyton in a dose- and contact time-dependent manner. It did not inhibit the growth of C. albicans, but at a high concentration, inhibited slightly the growth of C. neoformans. It had no fungicidal activity against C. albicans or C. neoformans.  相似文献   

18.
Absorption, metabolism and antioxidative effects of tea catechin in humans   总被引:4,自引:0,他引:4  
Green tea is consumed as a popular beverage in Japan and throughout the world. During the past decade, epidemiological studies have shown that tea catechin intake is associated with lower risk of cardiovascular disease. In vitro biochemical studies have reported that catechins, particularly epigallocatechin-3-gallate (EGCg), help to prevent oxidation of plasma low-density lipoprotein (LDL). LDL oxidation has been recognized to be an important step in the formation of atherosclerotic plaques and subsequent cardiovascular disease. Metabolic studies have shown that EGCg supplement is incorporated into human plasma at a maximum concentration of 4400 pmol/mL. Such concentrations would be enough to exert antioxidative activity in the blood stream. The potent antioxidant property of tea catechin may be beneficial in preventing the oxidation of LDL. It is of interest to examine the effect of green tea catechin supplementation on antioxidant capacity of plasma in humans by measuring plasma phosphatidylcholine hydroperoxide (PCOOH) as a marker of oxidized lipoproteins.  相似文献   

19.
Mononuclear osteoclast precursor cells fuse with each other to become mature multinucleated osteoclasts, which is regulated by dendritic cell-specific transmembrane protein (DC-STAMP). We evaluated the effects of tea extract and catechins on cell-cell fusion and DC-STAMP expression to elucidate their relationship with osteoclast development. When tea extract or epigallocatechin gallate (EGCg) was applied to RAW264.7 cells, multinucleated cells were increased significantly, while tartrate-resistant acid phosphatase (TRAP) activity was hardly upregulated. Flow cytometric analysis revealed that EGCg suppressed DC-STAMP expression on the cell surface, which is similar to osteoclast development. These observations suggest that TRAP activity is not activated even when suppression of both surface DC-STAMP expression and multinucleation occurs, which might be mediated by another pathway.  相似文献   

20.
Bacterial pneumonia in immunocompromised patients as well as elderly persons often becomes a life threatening disease, even when effective antibiotics are used extensively. In addition, the appearance of antibiotic-resistant bacteria in medical facilities as well as in patients requires another approach to treat such patients besides treatment with antibiotics. In this regard, green tea catechins, such as epigallocatechin gallate (EGCg), may be one of the potential agents for such purpose due to its possible potential immunomodulatory as well as antimicrobial activity. The studies by us showed that EGCg enhanced the in vitro resistance of alveolar macrophages to Legionella pneumophila infection by selective immunomodulatory effects on cytokine formation. Furthermore, the tobacco smoking-induced impairment of alveolar macrophages regarding antibacterial as well as immune activity was also recovered by EGCg treatment. These results indicate that EGCg may be a possible potential immunotherapeutic agent against respiratory infections in immunocompromised patients, such as heavy smokers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号