首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Dictyostelium Akt/PKB is homologous to mammalian Akt/PKB and is required for cell polarity and proper chemotaxis during early development. The kinase activity of Akt/PKB kinase is activated in response to chemoattractants in neutrophils and in Dictyostelium by the chemoattractant cAMP functioning via a pathway involving a heterotrimeric G protein and PI3-kinase. Dictyostelium contains several kinases structurally related to Akt/PKB, one of which, PKBR-1, is investigated here for its role in cell polarity, movement and cellular morphogenesis during development. RESULTS: PKBR-1 has a kinase and a carboxy-terminal domain related to those of Akt/PKB, but no PH domain. Instead, it has an amino-terminal myristoylation site, which is required for its constitutive membrane localization. Like Akt/PKB, PKBR-1 is activated by cAMP through a G-protein-dependent pathway, but does not require PI3-kinase, probably because of the constitutive membrane localization of PKBR-1. This is supported by experiments demonstrating the requirement for membrane association for activation and in vivo function of PKBR-1. PKBR-1 protein is found in all cells throughout early development but is then restricted to the apical cells in developing aggregates, which are thought to control morphogenesis. PKBR-1 null cells arrest development at the mound stage and are defective in morphogenesis and multicellular development. These phenotypes are complemented by Akt/PKB, suggesting functional overlap between PKBR-1 and Akt/PKB. Akt/PKB PKBR-1 double knockout cells exhibit growth defects and show stronger chemotaxis and cell-polarity defects than Akt/PKB null cells. CONCLUSIONS: Our results expand the previously known functions of Akt/PKB family members in cell movement and morphogenesis during Dictyostelium multicellular development. The results suggest that Akt/PKB and PKBR-1 have overlapping effectors and biological function: Akt/PKB functions predominantly during aggregation to control cell polarity and chemotaxis, whereas PKBR-1 is required for morphogenesis during multicellular development.  相似文献   

2.
Layilin, a cell surface hyaluronan receptor, interacts with merlin and radixin   总被引:13,自引:0,他引:13  
Layilin is a widely expressed integral membrane hyaluronan receptor, originally identified as a binding partner of talin located in membrane ruffles. We have identified merlin, the neurofibromatosis type 2 tumor suppressor protein and radixin, as other interactors with the carboxy-terminal domain of layilin. We show that the carboxy-terminal domain of layilin is capable of binding to the amino-terminal domain of radixin. An interdomain interaction between the amino- and the carboxy-terminal domains of radixin inhibits its ability to bind to layilin. In the presence of acidic phospholipids, the interdomain interaction of radixin is inhibited and layilin can bind to full-length radixin. In contrast, layilin binds both full-length and amino-terminal merlin-GST fusion proteins without a requirement for phospholipids. Furthermore, layilin antibody can immunoprecipitate merlin, confirming association in vivo between these two proteins, which also display similar subcellular localizations in ruffling membranes. No interaction was observed between layilin and ezrin or layilin and moesin. These findings expand the known binding partners of layilin to include other members of the talin/band 4.1/ERM (ezrin, radixin, and moesin) family of cytoskeletal-membrane linker molecules. This in turn suggests that layilin may mediate signals from extracellular matrix to the cell cytoskeleton via interaction with different intracellular binding partners and thereby be involved in the modulation of cortical structures in the cell.  相似文献   

3.
One mechanism multicellular structures use for controlling cell number [1, 2] involves the secretion and sensing of a factor, such as leptin [3] or myostatin [4], in mammals. Dictyostelium cells secrete autocrine factors for sensing cell density prior to aggregation and multicellular development [5, 6] such as CMF (conditioned-medium factor), which enables starving cells to respond to cAMP pulses [7-9]. Its actions are mediated by two receptors. CMFR1 activates a G protein-independent signaling pathway regulating gene expression [10]. An unknown Galpha1-dependent receptor activates phospholipase C (PLC), which regulates the lifetime of Galpha2-GTP [11-13]. Here, we describe RpkA, an unusual seven-transmembrane receptor that is fused to a C-terminal PIP5 kinase domain and that localizes in membranes of a late endosomal compartment. Loss of RpkA resulted in formation of persistent loose aggregates and altered expression of cAMP-regulated genes. The developmental defect can be rescued by full-length RpkA and the transmembrane domain only. The PIP5 kinase domain is dispensable for the developmental role of RpkA. rpkA- cells secrete and bind CMF but are unable to induce downstream responses. Inactivation of Galpha1, a negative regulator of CMF signaling, rescued the developmental defect of the rpkA- cells, suggesting that RpkA actions are mediated by Galpha1.  相似文献   

4.
The study of free-living amoebae has proven valuable to explain the molecular mechanisms controlling phagocytosis, cell adhesion and motility. In this study, we identified a new adhesion molecule in Dictyostelium amoebae. The SibA (Similar to Integrin Beta) protein is a type I transmembrane protein, and its cytosolic, transmembrane and extracellular domains contain features also found in integrin beta chains. In addition, the conserved cytosolic domain of SibA interacts with talin, a well-characterized partner of mammalian integrins. Finally, genetic inactivation of SIBA affects adhesion to phagocytic particles, as well as cell adhesion and spreading on its substrate. It does not visibly alter the organization of the actin cytoskeleton, cellular migration or multicellular development. Our results indicate that the SibA protein is a Dictyostelium cell adhesion molecule presenting structural and functional similarities to metazoan integrin beta chains. This study sheds light on the molecular mechanisms controlling cell adhesion and their establishment during evolution.  相似文献   

5.
In an attempt to identify unknown actin-binding proteins in cells of Dictyostelium discoideum that may be involved in the control of cell motility and chemotaxis, monoclonal antibodies were raised against proteins that had been enriched on an F-actin affinity matrix. One antibody recognized a protein distinguished by its strong accumulation at the tips of filopods. These cell-surface extensions containing a core of bundled actin filaments are rapidly protruded and retracted by cells in the growth-phase stage. The protein of 269 kD turned out to resemble mouse fibroblast talin (Rees et al., 1990) in its primary structure. The fit is best among the first 400-amino acid residues of the NH2-terminal region where identity between the two proteins is 44% and the last 200-amino acid residues of the COOH-terminal region with 36% identity. In the elongated cells of the aggregation stage the Dictyostelium talin is accumulated at the entire front where also F- actin is enriched. Since this protein exists in a soluble state in the cytoplasm, mechanisms are predicted that cause accumulation at sites of the cell where a front is established. Evidence for receptor-mediated accumulation was obtained by local stimulation of cells with cAMP. When a new front was induced by the chemoattractant, the talin accumulated there within half a minute, indicating a signal cascade in Dictyostelium responsible for assembly of the talin beneath sites of the plasma membrane where chemoattractant receptors are strongly activated. The ordered assembly of the talin homologue together with actin and a series of other proteins is considered to play a key role in chemotactic orientation.  相似文献   

6.
In the present study, we have examined the cellular and subcellular distribution of talin in several tissues of the chicken. By immunocytochemistry, Western Blot analysis and [125I]vinculin overlay, talin was demonstrated in most of the main tissues and cell types of the body. Corresponding to the property of talin to bind to the fibronectin receptor, talin was found to be confined to the site of the plasma membrane that abuts the extracellular matrix in various types of mesenchymal and epithelial cells. In the central nervous system talin was almost exclusively confined to cells of the connective tissue, i.e., blood vessels and the connective tissue sheaths. No evidence was obtained for the association of talin with any type of intercellular junction. In nonadhering cells such as circulating platelets and leukocytes, talin displayed a diffuse distribution throughout the cytoplasm. These findings suggest a general role for talin in certain aspects of cellular adhesion to the extracellular matrix.  相似文献   

7.
ARNO is a member of a family of guanine nucleotide exchange factors that activate small GTPases called ADP-ribosylation factors (ARFs) [1] [2] [3], which regulate vesicular trafficking and, in one case (ARF6), also regulate cortical actin structure [4]. ARNO is located at the plasma membrane, and in the presence of activated protein kinase C (PKC) can induce cortical actin rearrangements reminiscent of those produced by active ARF6 [5] [6] [7] [8]. High-affinity binding of ARNO to membranes, which is required for exchange activity, is mediated cooperatively by a pleckstrin homology (PH) domain and an adjacent carboxy-terminal polybasic domain [3] [9]. ARNO is phosphorylated in vivo by PKC on a single serine residue, S392, located within the carboxy-terminal polybasic domain. Mutation of S392 to alanine does not prevent ARNO-mediated actin rearrangements, suggesting that phosphorylation does not lead to ARNO activation [6]. Here, we report that phosphorylation negatively regulates ARNO exchange activity through a 'PH domain electrostatic switch'. Introduction of a negatively charged phosphate into the polybasic domain reduced interaction of ARNO with membranes both in vitro and in vivo, and inhibited exchange in vitro. This regulated membrane association is similar to the myristoyl electrostatic switch that controls membrane binding of the myristoylated alanine-rich C kinase substrate (MARCKS) [10], but to our knowledge is the first demonstration of an electrostatic switch regulating the membrane interaction of a protein containing a PH domain. This mechanism allows regulation of ARNO lipid binding and exchange activity at two levels, phosphoinositide-dependent recruitment and PKC-dependent displacement from the membrane.  相似文献   

8.
Most experiments observing cell migration use planar plastic or glass surfaces despite these conditions being considerably different from physiological ones. On such planar surfaces, cells take a dorsal-ventral polarity to move two-dimensionally. Cells in tissues, however, interact with surrounding cells and the extracellular matrix such that they transverse three-dimensionally. For this reason, three-dimensional matrices have become more and more popular for cell migration experiments. In addition, recent developments in imaging techniques have enabled high resolution observations of in vivo cell migration. The combination of three-dimensional matrices and such imaging techniques has revealed motile mechanisms in tissues not observable in studies using planar surfaces. Regarding models for such cell migration studies, the cellular slime mould Dictyostelium discoideum is ideal. Single amoeboid cells aggregate into hemispherical mound structures upon starvation to begin a multicellular morphogenesis. These tiny and simple multicellular bodies are suitable for observing the behaviors of individual cells in multicellular structures. Furthermore, the unique life cycle can be exploited to identify which genes are involved in cell migration in multicellular environments. Since mutants lacking such genes are expected to fail to undergo morphogenesis, easy and systematic gene screening is possible by isolating mutants whose developments arrest around the mound stage, which is the case for several mutants lacking specific cytoskeletal proteins. In this article, I discuss the basic elements required for cell migration in multicellular environments and how Dictyostelium can be used to elucidate them.  相似文献   

9.
Fundamental to cell adhesion and migration, integrins are large heterodimeric membrane proteins that uniquely mediate inside‐out signal transduction, whereby adhesion to the extracellular matrix is activated from within the cell by direct binding of talin to the cytoplasmic tail of the β integrin subunit. Here, we report the first structure of talin bound to an authentic full‐length β integrin tail. Using biophysical and whole cell measurements, we show that a specific ionic interaction between the talin F3 domain and the membrane–proximal helix of the β tail disrupts an integrin α/β salt bridge that helps maintain the integrin inactive state. Second, we identify a positively charged surface on the talin F2 domain that precisely orients talin to disrupt the heterodimeric integrin transmembrane (TM) complex. These results show key structural features that explain the ability of talin to mediate inside‐out TM signalling.  相似文献   

10.
Talin plays a key role in the assembly and stabilisation of focal adhesions, but whether it is directly involved in force transmission during morphogenesis remains to be elucidated. We show that the traction force of Dictyostelium cells mutant for one of its two talin genes talB is considerably smaller than that of wild-type cells, both in isolation and within tissues undergoing morphogenetic movement. The motility of mutant cells in tightly packed tissues in vivo or under strong resistance conditions in vitro was lower than that of wild-type cells, but their motility under low external force conditions was not impaired, indicating inefficient transmission of force in mutant cells. Antibody staining revealed that the talB gene product (talin B) exists as small units subjacent to the cell membrane at adhesion sites without forming large focal adhesion-like assemblies. The total amount of talin B on the cell membrane was larger in prestalk cells, which exert larger force than prespore cells during morphogenesis. We conclude that talin B is involved in force transmission between the cytoskeleton and cell exterior.  相似文献   

11.
A key step in the development of all multicellular organisms is the differentiation of specialized cell types. The eukaryotic microorganism Dictyostelium discoideum provides a unique experimental system for studying cell-type determination and spatial patterning in a developing multicellular organism. Unlike metazoans, which become multicellular by undergoing many rounds of cell division after fertilization of an egg, the social amoeba Dictyostelium achieves multicellularity by the aggregation of approximately 10(5) cells in response to nutrient depletion. Following aggregation, cell-type differentiation and morphogenesis result in a multicellular organism with only a few cell types that exhibit a defined patterning along the anterior-posterior axis of the organism. Analysis of the mechanisms that control these processes is facilitated by the relative simplicity of Dictyostelium development and the availability of molecular, genetic, and cell biological tools. Interestingly, analysis has shown that many molecules that play integral roles in the development of higher eukaryotes, such as PKA, STATs, and GSK-3, are also essential for cell-type differentiation and patterning in Dictyostelium. The role of these and other signaling pathways in the induction, maintenance, and patterning of cell types during Dictyostelium development is discussed.  相似文献   

12.
Talin, which is composed of head (THD) and rod domains, plays an important role in cell adhesion events in diverse species including most metazoans and Dictyostelium discoideum. Talin is abundant in the cytosol; however, it mediates adhesion by associating with integrins in the plasma membrane where it forms a primary link between integrins and the actin cytoskeleton. Cells modulate the partitioning of talin between the plasma membrane and the cytosol to control cell adhesion. Here, we combine nuclear magnetic resonance spectroscopy (NMR) with subcellular fractionation to characterize two distinct THD-rod domain interactions that control the interaction of talin with the actin cytoskeleton or its localization to the plasma membrane. An interaction between a discrete vinculin-binding region of the rod (VBS1/2a; Tln1(482-787)), and the THD restrains talin from interacting with the plasma membrane. Furthermore, we show that vinculin binding to VBS1/2a results in talin recruitment to the plasma membrane. Thus, we have structurally defined specific inter-domain interactions between THD and the talin rod domain that regulate the subcellular localization of talin.  相似文献   

13.
14.
TRAP1 (tumor necrosis factor receptor-associated protein 1) is a member of the molecular chaperone HSP90 (90-kDa heat shock protein) family. In this study, we mainly examined the behavior of Dictyostelium TRAP1 homologue, Dd-TRAP1, during Dictyostelium development by immunoelectron microscopy. In vegetatively growing D. discoideum Ax-2 cells, Dd-TRAP1 locates in nucleolus and vesicles in addition to the cell cortex including cell membrane. Many of Dd-TRAP1 molecules moved to the mitochondrial matrix in response to differentiation, although Dd-TRAP1 on the cell membrane seems to be retained. Some Dd-TRAP1 was also found to be secreted to locate outside the cell membrane in Ax-2 cells starved for 6 h. At the multicellular slug stage, Dd-TRAP1 was primarily located in mitochondria and cell membrane in both prestalk and prespore cells. More importantly, in differentiating prespore cells, a significant number of Dd-TRAP1 locates in the PSV (prespore-specific vacuole) that is a sole cell type-specific organelle and essential for spore wall formation, whereas some Dd-TRAP1 in the cell cortical region of prestalk cells. These findings strongly suggest the importance of Dd-TRAP1 regulated temporally and spatially during Dictyostelium development. Incidentally, we also have certified that the glucose-regulated protein 94 (Dd-GRP94) is predominantly located in Golgi vesicles and cisternae, followed by its colocalization with Dd-TRAP1 in the PSV.  相似文献   

15.
Dictyostelium discoideum cells possess multiple cyclic nucleotide phosphodiesterases that belong either to class I enzymes that are present in all eukaryotes or to the rare beta-lactamase class II. We describe here the identification and characterization of DdPDE4, the third class I enzyme of Dictyostelium. The deduced amino acid sequence predicts that DdPDE4 has a leader sequence, two transmembrane segments, and an extracellular catalytic domain that exhibits a high degree of homology with human cAMP-specific PDE8. Expression of the catalytic domain of DdPDE4 shows that the enzyme is a cAMP-specific phosphodiesterase with a K(m) of 10 microm; cGMP is hydrolyzed at least 100-fold more slowly. The full-length protein is shown to be membrane-bound with catalytic activity exposed to the extracellular medium. Northern blots and activity measurements reveal that expression of DdPDE4 is low during single cell stages and increases at 9 h of starvation, corresponding with mound stage. A function during multicellular development is confirmed by the phenotype of ddpde4(-) knock-out strains, showing normal aggregation but impaired development from the mound stage on. These results demonstrate that DdPDE4 is a unique membrane-bound phosphodiesterase with an extracellular catalytic domain regulating intercellular cAMP during multicellular development.  相似文献   

16.
Myosin null mutants of Dictyostelium are defective for cytokinesis, multicellular development, and capping of surface proteins. We have used these cells as transformation recipients for an altered myosin heavy chain gene that encodes a protein bearing a carboxy-terminal 34-kD truncation. This truncation eliminates threonine phosphorylation sites previously shown to control filament assembly in vitro. Despite restoration of growth in suspension, development, and ability to cap cell surface proteins, these delta C34-truncated myosin transformants display severe cytoskeletal abnormalities, including excessive localization of the truncated myosin to the cortical cytoskeleton, impaired cell shaped dynamics, and a temporal defect in myosin dissociation from beneath capped surface proteins. These data demonstrate that the carboxy-terminal domain of myosin plays a critical role in regulating the disassembly of the protein from contractile structures in vivo.  相似文献   

17.
In cultured cells, the 230-kDa protein talin is found at discrete plasma membrane foci known as focal adhesions, sites that anchor the intracellular actin cytoskeleton to the extracellular matrix. The regulated assembly of focal adhesions influences the direction of cell migrations or the reorientation of cell shapes. Biochemical studies of talin have shown that it binds to the proteins integrin, vinculin, and actin in vitro. To understand the function of talin in vivo and to correlate its in vitro and in vivo biochemical properties, various genetic approaches have been adopted. With the intention of using genetics in the study of talin, we identified a homologue to mouse talin in a genetic model system, the nematode Caenorhabditis elegans. C. elegans talin is 39% identical and 59% similar to mouse talin. In wild-type adult C. elegans, talin colocalizes with integrin, vinculin, and alpha-actinin in the focal adhesion-like structures found in the body-wall muscle. By examining the organization of talin in two different C. elegans mutant strains that do not make either beta-integrin or vinculin, we were able to determine that talin does not require vinculin for its initial organization at the membrane, but that it depends critically on the presence of integrin for its initial assembly at membrane foci.  相似文献   

18.
Two compounds, ammonia (NH3) and 3′5′ cyclic AMP (cAMP) act as specific morphogens in regulating the development of Dictyostelium discoideum [1–11]. A previous study [12] demonstrated that NH3 at concentrations that affect the course of morphogenesis completely inhibits the extracellular release of cAMP by aggregation competent cells incubated in shaken suspension. The present study extends this finding in two respects:
  • 1 Exposure of aggregation competent cells to NH3 (supplied as ammonium carbonate) is followed within a few minutes by the complete disappearance of intracellular cAMP. Subsequent removal of NH3 is followed by a rapid, complete restoration of the level. Neither the disappearance nor the reappearance is affected by the presence of cycloheximide, an inhibitor of protein synthesis.
  • 2 In a mutant strain of D discoideum, greatly increased sensitivity to NH3 as a regulator of morphogenesis is coupled with a correspondingly increased sensitivity to NH3 as an inhibitor of cAMP accumulation.
These results are consistent with a recently proposed [13, 14] model of morphogenetic regulation that is based on the supposition that NH3, by inhibiting cAMP production, restricts cAMP accumulation to specified constrained areas within the developing multicellular aggregate and thereby dictates the course of morphogenesis and cytodifferentiation.  相似文献   

19.
Huntington's disease is characterised by the death of cortical and striatal neurons, and is the result of an expanded polyglutamine tract in the Huntingtin protein [1]. Huntingtin is present on both endocytic and secretory membrane organelles but its function is unclear [2,3]. Rab GTPases regulate both of these transport pathways [4]. We have previously shown that Rab8 controls polarised membrane transport by modulating cell morphogenesis [5]. To understand Rab8-mediated processes, we searched for Rab8-interacting proteins by the yeast two-hybrid system. Here, we report that Huntingtin is linked to the Rab8 protein through FIP-2, a tumour necrosis factor-alpha (TNF-alpha)-inducible coiled-coil protein related to the NEMO protein [6,7]. The activated form of Rab8 interacted with the amino-terminal region of FIP-2, whereas dominant-negative Rab8 did not. Huntingtin bound to the carboxy-terminal region of FIP-2. Coexpressed FIP-2 and Huntingtin enhanced the recruitment of Huntingtin to Rab8-positive vesicular structures, and FIP-2 promoted cell polarisation in a similar way to Rab8. We propose a model in which Huntingtin, together with FIP-2 and Rab8, are part of a protein network that regulates membrane trafficking and cellular morphogenesis.  相似文献   

20.
Integrin-mediated cell adhesion is essential for development of multicellular organisms. In worms, flies, and vertebrates, talin forms a physical link between integrin cytoplasmic domains and the actin cytoskeleton. Loss of either integrins or talin leads to similar phenotypes. In vertebrates, talin is also a key regulator of integrin affinity. We used a ligand-mimetic Fab fragment, TWOW-1, to assess talin's role in regulating Drosophila alphaPS2betaPS affinity. Depletion of cellular metabolic energy reduced TWOW-1 binding, suggesting alphaPS2betaPS affinity is an active process as it is for vertebrate integrins. In contrast to vertebrate integrins, neither talin knockdown by RNA interference nor talin head overexpression had a significant effect on TWOW-1 binding. Furthermore, replacement of the transmembrane or talin-binding cytoplasmic domains of alphaPS2betaPS with those of human alphaIIbbeta3 failed to enable talin regulation of TWOW-1 binding. However, substitution of the extracellular and transmembrane domains of alphaPS2betaPS with those of alphaIIbbeta3 resulted in a constitutively active integrin whose affinity was reduced by talin knockdown. Furthermore, wild-type alphaIIbbeta3 was activated by overexpression of Drosophila talin head domain. Thus, despite evolutionary conservation of talin's integrin/cytoskeleton linkage function, talin is not sufficient to regulate Drosophila alphaPS2betaPS affinity because of structural features inherent in the alphaPS2betaPS extracellular and/or transmembrane domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号