首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple GATA factors – regulatory proteins with consensus zinc finger motifs that bind to DNA elements containing a GATA core sequence – exist in the filamentous fungus Neurospora crassa. One GATA factor, NIT2, controls nitrogen metabolism, whereas two others, WC-1 and WC-2, regulate genes responsive to blue light induction. A gene encoding a new GATA factor, named SRE, was isolated from Neurospora using a PCR-mediated method. Sequence analysis of the new GATA factor gene revealed an ORF specifying 587 amino acids, which is interrupted by two small introns. Unlike all previously known Neurospora GATA factors, which possess a single zinc-finger DNA-binding motif, SRE contains two GATA-type zinc fingers. The deduced amino acid sequence of SRE shows significant similarity to URBS1 of Ustilago and SREP of Penicillium. A loss-of-function mutation was created by the RIP procedure. Analysis of sre + and sre ? strains revealed that SRE acts as a negative regulator of iron uptake in Neurospora by controlling the synthesis of siderophores. Siderophore biosynthesis is repressed by high iron concentrations in the wild-type strain but not in sre ? mutant cells. The sre promoter contains a number of GATA sequences; however, expression of sre mRNA occurs in a constitutive fashion and is not regulated by the concentration of iron available to the cells.  相似文献   

2.
3.
Summary Purrtins can be utilized as a secondary nitrogen source by Neurospora crassa during conditions of nitrogen limitation. The expression of purine catabolic enzymes is governed by the nitrogen regulatory circuit and requires induction by uric acid. The major positive-acting nitrogen regulatory gene, nit-2, turns on the expression of the purine catabolic enzymes, which may also be subject to negative regulation by a second control gene, nmr. We have cloned alc, the structural gene which encodes allantoicase, an inducible enzyme of the purine degradative pathway. The identity of the alc clone was confirmed by restriction fragment length polymorphism analysis and by repeat-induced mutation. The alc gene is transcribed to give a single messenger RNA, approximately 1.2 kb in length. The negative-acting nmr gene affects the expression of alc in the expected manner. Both the nit-2 and the nmr control genes affect alc mRNA levels and allantoicase enzyme activity in both the induced and nitrogen-repressed conditions.  相似文献   

4.
Nitrate reductase of Neurospora crassa is a dimeric protein composed of two identical subunits, each possessing three separate domains, with flavin, heme, and molybdenum-containing cofactors. A number of mutants of nit-3, the structural gene that encodes Neurospora nitrate reductase, have been characterized at the molecular level. Amber nonsense mutants of nit-3 were found to possess a truncated protein detected by a specific antibody, whereas Ssu-1-suppressed nonsense mutants showed restoration of the wild-type, full-length nitrate reductase monomer. The mutants show constitutive expression of the truncated nitrate reductase protein; however normal control, which requires nitrate induction, was restored in the suppressed mutant strains. Three conventional nit-3 mutants were isolated by the polymerase chain reaction and sequenced; two of these mutants were due to the deletion of a single base in the coding region for the flavin domain, the third mutant was a nonsense mutation within the amino-terminal molybdenum-containing domain. Homologous recombination was shown to occur when a deleted nit-3 gene was introduced by transformation into a host strain with a single point mutation in the resident nit-3 gene. New, severely damaged, null nit-3 mutants were created by repeat-induced point mutation and demonstrated to be useful as host strains for transformation experiments.  相似文献   

5.
6.
Genes belonging to the ras superfamily encode low-molecular-weight GTP/GDP-binding proteins that are highly conserved in wide variety of organisms. We used the polymerase chain reaction (PCR) to isolate a novel member of the ras superfamily from the filamentous fungus Neurospora crassa and obtained a mammalian Krev-1 homolog. We named the gene krev-1 and analyzed its structure and function. The krev-1 gene encodes a polypeptide of 225 amino acids, which is nearly 60% homologous to the mammalian Krev-1 p21. The krev-1 gene product (KREV1) is functionally analogous to mammalian Krev-1 p21 and Rsr1p/Bud1p, a Krev-1 homolog from the yeast Saccharomyces cerevisiae. GAL1-driven expression of KREV1 in a wild-type yeast strain resulted in a random budding pattern, as did its mammalian counterpart Krev-1 p21. We disrupted the krev-1 gene by RIP (repeat-induced point mutation), but the krev-1 disruptants showed no abnormalities. By in vitro mutagenesis, we constructed several mutant krev-1 genes (G21V, A68T, and D128A) which mimic constitutively active mutants of Ha-ras, and the krev-1 (K25N) mutant which is analogous to a dominant-negative mutant of Ha-ras. Each mutant gene was introduced into the wild-type strain and the phenotypes were analyzed. We could not observe any difference in vegetative growth between these transformants. When each strain was used as the female in mating tests, the development of perithecia from protoperithecia was inhibited in all cases. The results indicate that the krev-1 gene may be involved in sexual cycle progression. Received: 28 January 1997 / Accepted: 3 April 1997  相似文献   

7.
Summary The genetic segregation of ribosomal DNA (rDNA) in Neurospora crassa was analyzed by exploiting restriction fragment length polymorphisms in the nontranscribed spacer (NTS) sequences of nine laboratory wild-type strains and wild-collected strains. In an analysis of random spore progeny from seven crosses, and of ordered tetrads from two of those crosses the rDNA was shown to be inherited in a simple, stable Mendelian fashion, exhibiting an approximately 1:1 ratio of the two parental rDNA types. No meiotic recombinants were detected among the progeny, indicating that non-sister-chromatid crossing over is highly suppressed in the rDNA region. The basis for this suppression of meiotic recombination is not known.  相似文献   

8.
The feasibility of utilizing the rapidly growing tropical woods for ethanol production by Neurospora crassa has been studied. Hydrolysis of cold alkali pretreated wood gave a saccharification of 68% based on the available carbohydrate. The direct fermentation of pretreated wood (20 g l?1) by Neurospora crassa gave quantitative conversion of available hemicellulose/cellulose to ethanol in 5 days. Increasing the substrate concentration to 50 g l?1lowered the conversion to 40–60% yielding 12 g l?1of ethanol. Fermentation of wood (50 g l?1) pretreated with hot 1 m NaOH followed by neutralization with HCl gave only 6 g l?1of ethanol.  相似文献   

9.
10.
Mutants that show reduced DNA methylation were identified in a mutant screen based on the assumptions that (i) the nucleoside analog 5-azacytidine (5-azaC) promotes the formation of potentially lethal DNA-methyltransferase adducts; (ii) reduction in DNA methyltransferase will decrease the sensitivity of cells to 5-azaC; and (iii) this potential selective advantage will be enhanced in mutants that are deficient in the repair of 5-azaC-induced DNA damage. Of fifteen potential repair mutants screened for sensitivity to 5-azaC, five (mus-9, mus-10, mus-11, mus-18, and uvs-3) showed moderately increased sensitivity and two (mus-20, mei-3) showed highly increased sensitivity. A mus-20 mutation was used to isolate three non-complementing methylation mutants. The mutations, named dim-1 (defective in methylation), reduced female fertility, reduced methylation by 40–50%, and altered patterns of methylation. In wild-type strains hypomethylation perse fails to alter methylation specificity. We demonstrate a growth-phase-dependent change in methylation patterns, detectable only in hypomethylated DNA from dim + cultures. This may represent a growth-phase-dependent change in the relative amounts of distinct species of methyltransferase, one of which may be encoded by the dim-1 gene. Received: 3 January 1998 / Accepted: 26 March 1998  相似文献   

11.
12.
As a first step towards understanding the process of blue light perception, and the signal transduction mechanisms involved, in Neurospora crassa we have used a pharmacological approach to screen a wide range of second messengers and chemical compounds known to interfere with the activity of well-known signal transducing molecules in vivo. We tested the influence of these compounds on the induction of the al-3 gene, a key step in light-induced carotenoid biosynthesis. This approach has implicated protein kinase C (PKC) as a component of the light transduction machinery. The conclusion is based on the effects of specific inhibitors (calphostin C and chelerythrine chloride) and activators of PKC (1,2-dihexanoyl-sn-glycerol). During vegetative growth PKC may be responsible for desensitization to light because inhibitors of the enzyme cause an increase in the total amount of mRNA transcribed after illumination. PKC is therefore proposed here to be an important regulator of transduction of the blue light signal, and may act through modification of the protein White Collar-1, which we show to be a substrate for PKC in N. crassa. Received: 4 December 1998 / Accepted: 21 May 1999  相似文献   

13.
14.
A third DNA polymerase ‘C’ with low molecular weight was isolated and purified 3700-fold from ground hyphae of Neurospora crassa WT 74 A, which shows similarities to β- and γ-polymerases from higher eukaryotes: preference for poly(rA)(dT) as a template/primer, inhibition by p-chloromercuribenzoate, resistance against N-ethylmaleimide up to 10 mmol/l, and molecular weight of about 40 000. This polymerase elutes as a distinct peak from DEAE-cellulose at 0.60 mol/l KCl and has an optimum for K+ at 2–20 mmol/l, for Mn2+ at 0.8 mmol/l, for Mg2+ at 4.0 mmol/l, the pH optimum is 8.0. Its Km is 1.5 μmol/l using dTTP as substrate. The enzyme activity described here is free of endonuclease but contains detectable amounts of exonuclease.  相似文献   

15.
Summary Repeat-induced point mutation (RIP) has been used to generate new mutations in the previously uncharacterised gene for malate synthase in Neurospora crassa. Molecular clones carrying the am (NADP-glutamate dehydrogenase) gene and the malate synthase gene from either N. crassa or Aspergillus nidulans have been introduced into Neurospora as ectopic duplicate copies by transformation, selecting for the am function in a deletion host. A number of meiotic progeny derived from these transformants were unable to use acetate as sole carbon source, yielded no detectable malate synthase activity and demonstrated extensive cytosine methylation of their duplicated sequences. The new locus has been designated acu-9 and has been assigned to linkage group VII.  相似文献   

16.
17.
18.
19.
20.
粗糙脉孢菌是一种重要的模式生物,在遗传调节机制、昼夜节律运行以及真菌光应答反应研究中起重要的作用.本综述主要介绍粗糙脉孢菌光受体WC-1和VVD的结构与功能,以及它们参与调节昼夜节律和光适应机制方面的研究进展.在该真菌中,所有已知的光应答反应都受蓝光调节,由光受体WC-1和VVD介导.WC-1是该真菌的转录因子,介导最初的光反应过程,产生VVD等多种光反应蛋白,而VVD通过负反馈机制抑制WC-1的转录作用.此外,vvd基因已经用于构建在哺乳动物中表达的光调节基因元件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号