首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of kainate on extracellular levels of amino acids in corpus striatum was investigated in vitro and in vivo, to elucidate the mechanism underlying its neurotoxicity. Kainate increased extracellular glutamate and aspartate in both striatal slices in vitro and intact striatum in vivo, as previously reported. Both in vitro and in vivo, DL-threo-3-hydroxyaspartate increased extracellular glutamate and aspartate levels (to between 150 and 200% of basal), and also enhanced their kainate-evoked release. The action of kainate in vivo was reduced by prior frontal decortication, whereas in vitro the kainate-evoked responses were only slightly reduced by tetrodotoxin, and remained above control values. These results confirm that kainate increases extracellular glutamate and aspartate, and provide evidence that this is due to synaptic release evoked by an action on receptors on glutamatergic neurone terminals. These findings may be relevant to the understanding of epilepsy.  相似文献   

2.
V J Balcar 《FEBS letters》1992,300(3):203-207
Uptake of 1 microM [3H]L-glutamate by cultured 3T3 fibroblasts was strongly dependent on extracellular Na+; it was reduced by elevated concentrations of K+ (60 mM) but it was not influenced by variations in the concentration of Ca2+ (0-9.6 mM). D- and L-Asparate, D- and L-threo-3-hydroxyaspartate DL-threo-3-methylaspartate and a few other glutamate derivatives and analogues inhibited the uptake but several close analogues of L-glutamate (including D-glutamate) had no effect, implying that the uptake system is highly structurally selective. The recently identified inhibitor of glutamate uptake in synaptosomal preparations, L-trans-pyrrolidine-2,4-dicarboxylate, was also among the inhibitors. Apparent Km of the uptake was found to be less than 10 microM. The present observations indicate that Na(+)-dependent 'high-affinity' uptake of L-glutamate may appear in structures which are apparently unrelated to glutamatergic synaptic transmission in the CNS.  相似文献   

3.
There is growing evidence that the loss of the nigrostriatal dopaminergic neurones induces an overactivity of the corticostriatal glutamatergic pathway which seems to be central to the physiopathology of parkinsonism. Moreover, glutamatergic mechanisms involving NMDA receptors have been shown to interfere with the therapeutical action of levodopa. Given the key role played by uptake processes in glutamate neurotransmission, this study examined the effects of nigrostriatal deafferentation and of levodopa treatment on the striatal expression of the glutamate transporters GLT1, GLAST and EAAC1 in the rat. No significant changes in striatal mRNA levels of these transporters were detected after either levodopa treatment (100 mg/kg; i.p., twice a day for 21 days) or unilateral lesion of the nigrostriatal pathway by intranigral 6-hydroxydopamine injection. In contrast, animals with the lesion subsequently treated with levodopa showed a selective increase (36%) in GLT1 mRNA levels in the denervated striatum versus controls. These animals also showed increased GLT1 protein expression, as assessed by immunostaining and western blotting. These data provide the first evidence that levodopa therapy may interfere with striatal glutamate transmission through change in expression of the primarily glial glutamate transporter GLT1. We further suggest that levodopa-induced GLT1 overexpression may represent a compensatory mechanism preventing neurotoxic accumulation of endogenous glutamate.  相似文献   

4.
Incubation of rat striatal tissue in the presence of acetylcholine, carbachol, oxotremorine, or nicotine results in a significant decrease in the sodium-dependent high-affinity glutamate uptake (HAGU). The cholinergic inhibitory effect on glutamate transport is no more detectable in the presence of atropine, a cholinergic receptor antagonist. These data support the hypothesis that glutamatergic nerve ending activity in the striatum is modulated by cholinergic neurons. The effects would involve both muscarinic and nicotinic presynaptic receptors located on the corticostriatal glutamatergic terminals.  相似文献   

5.
Abstract: Disruption of corticostriatal glutamate input in the striatum decreased significantly extracellular striatal glutamate and dopamine levels. Local administration of 300 µ M concentration of excitatory receptor agonist kainic acid increased significantly extracellular striatal dopamine in intact freely moving rats. These findings support the hypothesis that glutamate exerts a tonic facilitatory effect on striatal dopamine release. The effect of kainic acid on extracellular striatal glutamate concentration in intact rats was a biphasic increase. The first glutamate increase can be explained by stimulation of presynaptic kainate receptors present on corticostriatal glutamatergic nerve terminals; the second increase is probably the result of a continuous interaction of the different striatal neurotransmitters after disturbance of their balance. Release of dopamine and glutamate was modulated differently in the intact striatum and in the striatum deprived of corticostriatal input. Dopamine release in the denervated striatum after kainate receptor stimulation was significantly lower than in intact striatum, confirming the so-called cooperativity between glutamate and kainic acid. Loss of presynaptic kainate receptors on the glutamatergic nerve terminals after decortication resulted in a loss of effect of kainic acid on glutamate release in denervated striatum. Aspartate showed no significant changes in this study.  相似文献   

6.
Altered glutamatergic neurotransmission appears to be central to the pathophysiology of Parkinson's disease; consequently, considerable effort has been made to elucidate neuroprotective mechanisms against such toxicity. In the present study, the possible neuroprotective effect of glutamate receptor antagonists against MPP+ neurotoxicity on dopaminergic terminals of rat striatum was investigated. Different doses of glutamate receptor antagonists were coinfused with 1.5 microg of MPP+ into the striatum; kynurenic acid, a nonselective antagonist of glutamate receptors (30 and 60 nmol), partially protected dopaminergic terminal degeneration in terms of rescue of dopamine levels and tyrosine hydroxylase immunohistochemistry. Dizocilpine, a channel blocker of the NMDA receptor (1, 4, and 8 nmol), and 7-chlorokynurenic acid, a selective antagonist at the glycine site of the NMDA receptor (1 and 10 nmol), failed to protect dopaminergic terminals from MPP+ toxicity. However, 6-cyano-7-nitroquinoxaline-2,3-dione (0.5 and 1 nmol) and 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (1 nmol), two AMPA-kainate receptor antagonists, protected against MPP toxicity. Our findings suggest that the toxic effects of MPP+ on dopaminergic terminals are not mediated through a direct interaction with the NMDA subtype of glutamate receptor, but with the AMPA-kainate subtype.  相似文献   

7.
J.R. Simon 《Life sciences》1982,31(14):1501-1508
Previous reports suggest the existence of a cortico-striatal pathway which might use glutamate as the transmitter. In the present study, the possible influence of this pathway on striatal cholinergic neurons was investigated. Two weeks following surgical destruction of the cerebral cortex, the high affinity uptake of glutamate and choline into striatal synaptosomes was significantly reduced whereas GABA uptake was unaffected. In acute experiments (1 hour following decortication), only choline uptake was significantly reduced while the uptake of glutamate and GABA were not altered. Acute injection (2 minutes) of kainic acid into the striatum, 1 hour after decortication, reversed the effect of the decortication on choline uptake, perhaps by simulating an excitatory input to the striatum which was presumably removed by the cortical ablation. These observations are consistent with the existence of a cortical input (perhaps glutamatergic) to the striatum and suggest that striatal cholinergic neurons can be influenced by this cortico-striatal pathway.  相似文献   

8.
The turnover rate of gamma-aminobutyric acid (GABA) in the rat striatum was estimated by measuring its accumulation after inhibition of GABA-transaminase (GABA-T) with gabaculine. Intrastriatal injections of 100 micrograms gabaculine induced a rapid and complete inhibition of GABA-T. GABA accumulation was linear with time for at least 60 min (estimated turnover rate = 25 nmol/mg protein/h). The accumulation of GABA after gabaculine administration in animals that had been treated with kainic acid (5 nmol intrastriatally, 7 days) was only 40% of the control value, indicating that a major fraction of the net increase in GABA content induced by gabaculine originates in kainic acid-sensitive neurons. Intrastriatal injection of a mixture of kainic acid (5 nmol) and gabaculine caused a net increase in striatal GABA content significantly greater than that observed in controls, suggesting that neuronal death induced by kainic acid is preceded by a period of increased neuronal activity. Glutamic acid, the putative neurotransmitter for the excitatory corticostriatal pathway, also produced a significant increase in striatal GABA accumulation when injected together with gabaculine. This effect was blocked by the administration of the glutamate receptor antagonist glutamic acid diethyl ester. The interactions between GABAergic neurons and other neurotransmitters present in the striatum were also analyzed.  相似文献   

9.
Glutamate and aspartate are the primary neurotransmitters of projections from motor and premotor cortices to the striatum. Release of glutamate may be modulated by dopamine receptors located on corticostriatal terminals. The present study used microdialysis to investigate the dopaminergic modulation of in vivo striatal glutamate and aspartate release in the striatum of awake-behaving rats. Local perfusion with a depolarizing concentration of K+ through a dialysis probe into the rat striatum produced a significant increase in the release of glutamate, aspartate, and taurine. The D2 agonist LY171555 blocked the K(+)-induced release of glutamate and aspartate, but not taurine, in a concentration-dependent manner. The D1 agonist SKF 38393 did not alter K(+)-induced release of glutamate and taurine, but did significantly decrease aspartate release. Neither agonist had any effect on basal amino acid release. The D2 antagonist (-)-sulpiride reversed the inhibitory effects of LY 171555 on K(+)-induced glutamate release. These results provide in vivo evidence for a functional interaction between dopamine, the D2 receptor, and striatal glutamate release.  相似文献   

10.
Abstract: Low extracellular glutamate content is maintained primarily by high-affinity sodium-dependent glutamate transport. Three glutamate transporter proteins have been cloned: GLT-1 and GLAST are astroglial, whereas EAAC1 is neuronal. The effects of axotomy on glutamate transporter expression was evaluated in adult rats following unilateral fimbria-fornix and corticostriatal lesions. The hippocampus and striatum were collected at 3, 7, 14, and 30 days postlesion. Homogenates were immunoblotted using antibodies directed against GLT-1, GLAST, EAAC1, and glial fibrillary acidic protein and assayed for glutamate transport by d -[3H]aspartate binding. GLT-1 immunoreactivity was decreased within the ipsilateral hippocampus and striatum at 14 days postlesion. GLAST immunoreactivity was decreased within the ipsilateral hippocampus and striatum at 7 and 14 days postlesion. No alterations in EAAC1 immunoreactivity were observed. d -[3H]Aspartate binding was decreased at 14 days postlesion within the ipsilateral hippocampus and at 7 and 14 days postlesion within the ipsilateral striatum. By 30 days postlesion, glutamate transporters and d -[3H]aspartate binding returned to control levels. This study demonstrates the down-regulation of primarily glial, and not neuronal, glutamate transporters following regional disconnection.  相似文献   

11.
A corticostriatal-dependent deficit in the release of ascorbate (AA), an antioxidant vitamin and neuromodulator, occurs concurrently in striatum with dysfunctional GLT1-dependent uptake of glutamate in the R6/2 mouse model of Huntington's disease (HD), an autosomal dominant condition characterized by overt corticostriatal dysfunction. To determine if deficient striatal AA release into extracellular fluid is related to altered GLT1 activity in HD, symptomatic R6/2 mice between 6 and 9 weeks of age and age-matched wild-type (WT) mice received single daily injections of 200 mg/kg ceftriaxone, a β-lactam antibiotic that elevates the functional expression of GLT1, or saline vehicle for five consecutive days. On the following day, in vivo voltammetry was coupled with corticostriatal afferent stimulation to monitor evoked release of AA into striatum. In saline-treated mice, we found a marked decrease in evoked extracellular AA in striatum of R6/2 relative to WT. Ceftriaxone, in contrast, restored striatal AA in R6/2 mice to WT levels. In addition, intra-striatal infusion of either the GLT1 inhibitor dihydrokainic acid or dl-threo-beta-benzyloxyaspartate blocked evoked striatal AA release. Collectively, our results provide compelling evidence for a link between GLT1 activation and release of AA into the striatal extracellular fluid, and suggest that dysfunction of this system is a key component of HD pathophysiology.  相似文献   

12.
The dipeptide N-acetyl-aspartyl-glutamate (NAAG) has been proposed as putative neurotransmitter of some corticostriatal projections. To further explore this possibility, endogenous NAAG levels were measured in various microdissected striatal regions in normal animals and in those with bilateral lesion of sensorimotor cortex. In intact rats there was a rostro-caudal gradient for NAAG, with highest concentrations in the more caudal portions of the striatum without significant differences between the medial and lateral regions. Decortication induced no significant changes in peptide concentration in any of the striatal regions or in the respective crude synaptosomal (P2) fractions. However, decorticated animals showed a large degree of deafferentation as evidenced by a marked and significant decrease in [3H]glutamate uptake as well as in glutamate levels measured in striatal homogenates or in crude synaptosomal fractions. No changes in striatal dopamine levels were observed in lesioned animals. Thus, these findings are not in favor of the existence of corticostriatal projections arising from the sensorimotor cortex using NAAG as neurotransmitter.  相似文献   

13.
In immature rodent brain, the glutamate receptor agonist N-methyl-D-aspartate (NMDA) is a potent neurotoxin. In postnatal day (PND)-7 rats, intrastriatal injection of 25 nmol of NMDA results in extensive ipsilateral forebrain injury. In this study, we examined alterations in high-affinity [3H]glutamate uptake (HAGU) in NMDA-lesioned striatum. HAGU was assayed in synaptosomes, prepared from lesioned striatum, the corresponding contralateral striatum, or unlesioned controls. Twenty-four hours after NMDA injection (25 nmol), HAGU declined 44 +/- 8% in lesioned tissue, compared with the contralateral striatum (mean +/- SEM, n = 6 assays, p less than 0.006, paired t test). Doses of 5-25 nmol of NMDA resulted in increasing suppression of HAGU (5 nmol, n = 3; 12.5 nmol, n = 3; and 25 nmol, n = 5 assays; p less than 0.01, regression analysis). The temporal evolution of HAGU suppression was biphasic. There was an early transient suppression of HAGU (-28 +/- 4% at 1 h; p less than 0.03, analysis of variance, comparing changes at 0.5, 1, 2, and 3 h after lesioning); 1 or 5 days postinjury there was sustained loss of HAGU (at 5 days, -56 +/- 11%, n = 3, p less than 0.03, paired t test, lesioned versus contralateral striata).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Modulation of Human Glutamate Transporter Activity by Phorbol Ester   总被引:5,自引:4,他引:1  
Abstract: Termination of synaptic glutamate transmission depends on rapid removal of glutamate by neuronal and glial high-affinity transporters. Molecular biological and pharmacological studies have demonstrated that at least five subtypes of Na+-dependent mammalian glutamate transporters exist. Our study demonstrates that Y-79 human retinoblastoma cells express a single Na+-dependent glutamate uptake system with a K m of 1.7 ± 0.42 µ M that is inhibited by dihydrokainate and dl - threo -β-hydroxyaspartate (IC50 = 0.29 ± 0.17 µ M and 2.0 ± 0.43 µ M , respectively). The protein kinase C activator phorbol 12-myristate 13-acetate caused a concentration-dependent inhibition of glutamate uptake (IC50 = 0.56 ± 0.05 n M ), but did not affect Na+-dependent glycine uptake significantly. This inhibition of glutamate uptake resulted from a fivefold decrease in the transporter's affinity for glutamate, without significantly altering the V max. 4α-Phorbol 12,13-didecanoate, a phorbol ester that does not activate protein kinase C, did not alter glutamate uptake significantly. The phorbol 12-myristate 13-acetate-induced inhibition of glutamate uptake was reversed by preincubation with staurosporine. The biophysical and pharmacological profile of the human glutamate transporter expressed by the Y-79 cell line indicates that it belongs to the dihydrokainate-sensitive EAAT2/GLT-1 subtype. This conclusion was confirmed by western blot analysis. Protein kinase C modulation of glutamate transporter activity may represent a mechanism to modulate extracellular glutamate and shape postsynaptic responses.  相似文献   

15.
Glutamate plays a central role in the excitatory synaptic transmission and is important for brain development and functioning. Increased glutamate levels in the synaptic cleft are related to neuronal damage associated with excitotoxicity. Guanidinoacetate methyltransferase (GAMT) deficiency is an inherited neurometabolic disorder biochemically characterized by tissue accumulation of guanidinoacetate (GAA) and depletion of creatine. Affected patients present epilepsy and mental retardation whose pathogeny is unclear. In the present study we investigated the in vitro and in vivo (intrastriatal administration) effect of GAA on glutamate uptake by striatum slices of developing and adult rats. Results showed that GAA significantly inhibited in vitro glutamate uptake at 50 μM and 100 μM in all ages tested. We also tested the effect of taurine on the inhibition of glutamate uptake caused by GAA. Taurine significantly attenuated the inhibitory effect caused by 50 μM GAA, but did not alter that provoked by 100 μM GAA. Furthermore, intrastriatal administration of a solution of 30 μM GAA (0.06 nmol/striatum) significantly inhibited glutamate uptake by rat striatum slices. Our results suggest that the inhibition of striatal glutamate uptake caused by GAA might be involved in the neuropathology and especially in the acute neurological features present in patients with GAMT-deficiency.  相似文献   

16.
We examined the impact of hypoxia-ischemia on high-affinity [3H]glutamate uptake into a synaptosomal fraction prepared from immature rat corpus striatum. In 7-day-old pups the right carotid artery was ligated, and pups were exposed to 8% oxygen for 0, 0.5, 1, or 2.5 h, and allowed to recover for up to 24 h before they were killed. High-affinity glutamate uptakes in striatal synaptosomes derived from tissue ipsilateral and contralateral to ligation were compared. After 1 h of hypoxia plus ischemia, high-affinity glutamate uptake in the striatum was reduced by 54 +/- 13% compared with values from the opposite (nonischemic) side of the brain (p less than 0.01, t test versus ligates not exposed to hypoxia). There were similar declines after 2.5 h of hypoxia-ischemia. Activity remained low after a 1 h recovery period in room air, but after 24 h of recovery, high-affinity glutamate uptake was equal bilaterally. Kinetic analysis revealed that loss of activity could be attributed primarily to a 40% reduction in the number of uptake sites. Hypoxia alone had no effect on high-affinity glutamate uptake although it reduced synaptosomal uptake of [3H]3,4-dihydroxyphenylethylamine. Addition of 1 mg/ml of bovine serum albumin to the incubation medium preferentially stimulated high-affinity glutamate uptake in hypoxic-ischemic brain compared with its effects in normal tissue. These studies demonstrate that hypoxia-ischemia reversibly inhibits high-affinity glutamate uptake and this occurs earlier than the time required to produce neuronal damage in the model.  相似文献   

17.
This study compared the effects of the disruption of the two main presumably glutamatergic striatal inputs, the corticostriatal and thalamostriatal pathways, on GLT1 expression in the rat striatum, using in situ hybridization and immunohistochemistry. Unilateral ibotenate-induced thalamic lesion produced no significant changes in striatal GLT1 mRNA labeling and immunostaining as assessed at 5 and 12 days postlesion. In contrast, significant increases in both parameters were measured after bilateral cortical lesion by superficial thermocoagulation. GLT1 mRNA levels increased predominantly in the dorsolateral part of the striatum; there, the increases were significant at 5 (+84%), 12 (+101%), and 21 (+45%) but not at 35 days postlesion. GLT1 immunostaining increased significantly and homogeneously by 17-26% at 12 and 21 days postlesion. The increase in GLT1 expression at 12 days postlesion was further confirmed by western blot analysis; in contrast, a 36% decrease in glutamate uptake activity was measured at the same time point. These data indicate that striatal GLT1 expression depends on corticostriatal but not thalamostriatal innervation. Comparison of our results with previous data showing that cortical lesion by aspiration downregulates striatal GLT1 expression further suggests that differential changes in GLT1 expression, and thus presumably in glial cell function, may occur in the target striatum depending on the way the cortical neurons degenerate.  相似文献   

18.
In vivo electrical stimulation of the frontal cortical areas was found to enhance sodium-dependent high-affinity glutamate uptake (HAGU) measured in rat striatal homogenates. This activating effect was counteracted by in vivo administration of apomorphine and by in vitro addition of dopamine (DA; 10(-8) M) in the incubation medium, and potentiated by in vivo haloperidol administration. At the doses used, the dopaminergic compounds had no effect on basal HAGU. alpha-Methylparatyrosine pretreatment was found to enhance slightly basal HAGU as well as the activating effects of cortical stimulation. Interestingly enough, lesion of dopaminergic neurons by substantia nigra injection of 6-hydroxydopamine (6-OHDA) did not cause any significant change either in basal HAGU or in the effect of cortical stimulation. Measurement of DA effects in vitro in experiments combined with in vivo manipulations of the dopaminergic nigrostriatal and corticostriatal systems showed that the capacity of DA to inhibit striatal HAGU depends directly on the level of the uptake activation reached over basal value. These results suggest that under physiological conditions, the dopaminergic nigrostriatal pathway exerts a modulatory presynaptic action on corticostriatal glutamatergic transmission, counteracting increasing glutamatergic activity. In the case of chronic DA depletion induced by 6-OHDA, striatal adaptations may occur modifying the mechanisms acting at corticostriatal nerve terminal level.  相似文献   

19.
20.
The role of excitotoxicity in the cerebral damage of glutaryl-CoA dehydrogenase deficiency (GDD) is under intense debate. We therefore investigated the in vitro effect of glutaric (GA) and 3-hydroxyglutaric (3-OHGA) acids, which accumulate in GDD, on [(3)H]glutamate uptake by slices and synaptosomal preparations from cerebral cortex and striatum of rats aged 7, 15 and 30 days. Glutamate uptake was significantly decreased by high concentrations of GA in cortical slices of 7-day-old rats, but not in cerebral cortex from 15- and 30-day-old rats and in striatum from all studied ages. Furthermore, this effect was not due to cellular death and was prevented by N-acetylcysteine preadministration, suggesting the involvement of oxidative damage. In contrast, glutamate uptake by brain slices was not affected by 3-OHGA exposure. Immunoblot analysis revealed that GLAST transporters were more abundant in the cerebral cortex compared to the striatum of 7-day-old rats. Moreover, the simultaneous addition of GA and dihydrokainate (DHK), a specific inhibitor of GLT1, resulted in a significantly higher inhibition of [(3)H]glutamate uptake by cortical slices of 7-day-old rats than that induced by the sole presence of DHK. We also observed that both GA and 3-OHGA exposure did not alter the incorporation of glutamate into synaptosomal preparations from cerebral cortex and striatum of rats aged 7, 15 and 30 days. Finally, GA in vivo administration did not alter glutamate uptake into cortical slices from 7-day-old rats. Our findings may explain at least in part why cortical neurons are more vulnerable to damage at birth as evidenced by the frontotemporal cortical atrophy observed in newborns affected by GDD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号