首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to quantify the ultrastructural changes associated with cellular differentiation, we have performed a morphometric analysis of the ultrastructure of the calyptrogen, columella, and peripheral cells of the root cap of Zea mays. The relative volumes of the nucleus, nucleolus, and mitochondria in the protoplasm gradually decrease as a cell moves through the root cap. The relative volume of plastids increases 240% during the differentiation of calyptrogen cells into columella cells. This increase is transient, however, since the relative volume of plastids as well as starch in plastids decreases markedly as columella cells differentiate into peripheral cells. Dictyosomes and spherosomes increase more gradually than plastids, peaking in relative volume in the innermost peripheral cells (PCI). The relative volume of the vacuome decreases as calyptrogen cells differentiate into columella cells, after which it increases during the differentiation of peripheral cells. By the time the outermost peripheral cells (PCIII) are sloughed from the cap, the relative volume of the vacuome has almost tripled. These results indicate that each cell type comprising the root cap of Zea mays is characterized by a distinctive ultrastructure. Furthermore, the ultrastructural changes associated with the differentiation of these cells are organelle specific. The results of this study are discussed relative to the function of the various cell types of the root cap.  相似文献   

2.
MOORE  RANDY 《Annals of botany》1985,55(3):367-373
Cellular and tissue volumes in caps of primary and lateral rootsof Helianthus annuus have been measured in order to determinequantitatively how tissues and their functions are partitionedin root caps. Patterns of change in cellular dimensions andvolumes are similar in caps of primary and lateral roots. Significantincreases in cellular dimensions and volume occur during thedifferentiation of columella cells and the innermost peripheralcells. There are no significant changes in cellular dimensionsas either (i) the production and secretion of mucilage begins,or (ii) cells are sloughed from the cap. Tissues are partitionedsimilarly in caps of primary and lateral roots. indeed, rootcaps allocate 7–8 per cent of their volume for regeneration(i.e. calyptrogen tissue), 16–19 per cent of their volumefor graviperception (i.e. columella tissue), and approx. 38per cent of their volume for the production and secretion ofmucilage. These results are discussed relative to patterns ofcellular differentiation and tissue function in root caps. Helianthus annuus, root caps, primary root, lateral root, calyptrogen, columella, peripheral cells, tissue partitioning  相似文献   

3.
S. F. Baum  T. L. Rost 《Protoplasma》1996,192(3-4):178-188
Summary We investigated the development of the root cap and protoderm inArabidopsis thaliana root tips.A. Thaliana roots have closed apical organization with the peripheral root cap, columella root cap and protoderm developing from the dermatogen/calyptrogen histogen. The columella root cap arises from columella initials. The initials for the peripheral root cap and protoderm are arranged in a collar and the initiation event for these cells occurs in a sequential pattern that is coordinated with the columella initials. The resulting root cap appears as a series of interconnected spiraling cones. The protoderm, in three-dimensions, is a cylinder composed of cell files made up of packets of cells. The number of cell files within the protoderm cylinder increases as the root ages from one to two weeks. The coordinated division sequence of the dermatogen/calyptrogen and the increase in the number of protoderm cell files are both features of post-embryonic development within the primary root meristem.Abbreviations RCP root cap/protoderm - CI columella initial - PI protoderm initial  相似文献   

4.
MOORE  RANDY 《Annals of botany》1989,64(3):271-277
Primary roots of a starchless mutant of Arabidopsis thalianaL. are strongly graviresponsive despite lacking amyloplastsin their columella cells. The ultrastructures of calyptrogenand peripheral cells in wild-type as compared to mutant seedlingsare not significantly different. The largest difference in cellulardifferentiation in caps of mutant and wild-type roots is therelative volume of plastids in columella cells. Plastids occupy12.3% of the volume of columella cells in wild-type seedlings,but only 3.69% of columella cells in mutant seedlings. Theseresults indicate that: (1) amyloplasts and starch are not necessaryfor root graviresponsiveness; (2) the increase in relative volumeof plastids that usually accompanies differentiation of columellacells is not necessary for root graviresponsiveness; and (3)the absence of starch and amyloplasts does not affect the structureof calyptrogen (i.e. meristematic) and secretory (i.e. peripheral)cells in root caps. These results are discussed relative toproposed models for root gravitropism. Arabidopsis thaliana, gravitropism (root), plastids, root cap, stereology, ultrastructure  相似文献   

5.
MOORE  RANDY 《Annals of botany》1987,59(6):661-666
Starch occupies 4.2 per cent of the volume of plastids in calyptrogencells in primary roots of Zea mays L. cv. vp-7 wild type. Plastidsin calyptrogen cells are distributed randomly around large,centrally located nuclei. The differentiation of calyptrogencells into columella cells is characterized by cellular enlargementand the sedimentation of plastids to the bottom of the cells.Although sedimented plastids in columella cells do not containsignificantly more starch than those in calyptrogen cells, primaryroots are graviresponsive. The onset of root gravicurvatureis not associated with a significant change in the distributionof plastids in columella cells. These results indicate thatin this cultivar of Z. mays (1) the sedimentation of plastidsin columella cells is not based upon their increased densityresulting from increased starch content alone, (2) starch-ladenamyloplasts need not be present in columella cells for rootsto be graviresponsive, and (3) the onset of root gravicurvaturedoes not require a major redistribution of plastids in columellacells. Columella cell, gravitropism (root), plastids, root cap, Zea mays  相似文献   

6.
In order to determine if patterns of cell differentiation are similar in primary and lateral roots, I performed a morphometric analysis of the ultrastructure of calyptrogen, columella, and peripheral cells in primary and lateral roots of Helianthus annuus. Each cell type is characterized by a unique ultrastructure, and the ultrastructural changes characteristic of cellular differentiation in root caps are organelle specific. No major structural differences exist in the structures of the composite cell types, or in patterns of cell differentiation in caps of primary vs. lateral roots.  相似文献   

7.
We quantified the structural changes accompanying cellular differentiation in root caps of Zea mays cv. Ageotropic to determine the developmental basis for the nongraviresponsiveness of their primary roots. Cells of the calyptrogen and columella of primary roots of the ageotropic mutant have structures indistinguishable from those of caps of primary roots of Z. mays cv. Kys the graviresponsive, wild-type parent of Z. mays cv. Ageotropic. However, the relative volumes of dictyosomes, dictyosome-derived vesicles and starch in the outermost peripheral cells of wild-type roots were significantly lower than were those in peripheral cells of mutant roots. This corresponds to a dramatic accumulation of starch and mucilage-filled vesicles in peripheral cells of mutant roots. Cellular differentiation in root caps of graviresponsive seminal roots of the Ageotropic mutant resembled that of primary and seminal roots of the wild-type cultivar, and differed significantly from that of primary roots of the mutant. We conclude that the mutation that blocks secretion of mucilage from peripheral cells of Ageotropic roots: (1) expresses itself late in cellular differentiation in root caps; (2) is expressed only in primary (but not seminal) roots of the Ageotropic mutant; and (3) is consistent with malfunctioning dictyosomes and dictyosome-derived vesicles being the cellular basis for agravitropism of primary roots of this mutant.  相似文献   

8.
Summary The root apex of barley,Hordeum vulgare cv. Proctor, is a structure which undergoes a number of gross morphological and ultrastructural changes from the normal patterns of development when grown under a small degree of applied mechanical constraint (2 × 104 Pa.). The root cap is generally smaller and thus does not confer to the root meristem the same degree of protection as caps growing in an uncompacted medium. Associated with this loss of peripheral cells is a reduction in the volume of mucigel in contact with the root apex.In many impeded caps, the planes of division in the calyptrogen are often neither transverse nor longitudinal. There is a reduction in both the number of amyloplasts and starch grains per amyloplast in the columella, but any statolith function of these must not be impaired since the root remains geotropically responsive. The patterns of accumulation of polysaccharide in the walls of peripheral cells as a result of Golgi activity are modified by mechanical impedance.  相似文献   

9.
In order to determine the involvement of glucose-6-phosphatasein mucilage secretion by root cap cells, we have cytochemicallylocalized the enzyme in columella and peripheral cells of rootcaps of Zea mays. Glucose-6-phosphatase is associated with theplasmalemma and cell wall of columella cells. As columella cellsdifferentiate into peripheral cells and begin to produce andsecrete mucilage, glucose-6-phosphatase staining intensifiesand becomes associated with the mucilage and, to a lesser extent,the cell wall. Cells being sloughed from the cap are characterizedby glucose-6-phosphatase staining being associated with thevacuole and plasmalemma. These changes in enzyme localizationduring cellular differentiation in root caps suggest that glucose-6-phosphataseis involved in the production and/or secretion of mucilage byperipheral cells of Z. mays. Zea mays, corn, glucose-6-phosphatase, columella cell, peripheral cell, mucilage, secretion, cytochemistry  相似文献   

10.
We launched imbibed seeds of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on cellular differentiation in root caps. The influence of microgravity varied with different stages of cellular differentiation. Overall, microgravity tended to 1) increase relative volumes of hyaloplasm and lipid bodies, 2) decrease the relative volumes of plastids, mitochondria, dictyosomes, and the vacuome, and 3) exert no influence on the relative volume of nuclei in cells comprising the root cap. The reduced allocation of dictyosomal volume in peripheral cells of flight-grown seedlings correlated positively with their secretion of significantly less mucilage than peripheral cells of Earth-grown seedlings. These results indicate that 1) microgravity alters the patterns of cellular differentiation and structures of all cell types comprising the root cap, and 2) the influence of microgravity on cellular differentiation in root caps of Zea mays is organelle specific.  相似文献   

11.
Cellular and tissue volumes were measured in caps of primary roots of Zea mays. There is an 850% increase in cellular volume as cellular function changes from that of being meristematic (i.e., calyptrogen cells) to graviperception (i.e., columella cells), and a 22% increase in cellular volume during the functional transition from graviperception to the production and secretion of mucilage. Cellular volume does not change significantly after cells cease mucilage production and are sloughed from the cap. Root caps of Z. mays allocate 7.5% of their volume for regeneration, 14.9% for graviperception, 24.3% for the transition of function from graviperception to mucilage production and secretion, and 38.7% for the production and secretion of mucilage. The remaining 14.5% of the cap volume is comprised of cells being sloughed from the cap.  相似文献   

12.
In order to determine what structural changes are associated with the onset of graviresponsiveness by plant roots, we have monitored the quantitative ultrastructures of columella (i.e., graviperceptive) cells in primary and secondary roots of Ricinus communis. The relative volumes of cellular components in lateral (i.e., minimally graviresponsive) roots were not significantly different from those of primary roots. The relative volumes of cellular components in secondary roots growing laterally were not significantly different from those of graviresponsive secondary roots. Therefore, the onset of graviresponsiveness by secondary roots of R. communis is not correlated with changes in organellar concentrations in columella cells. These results are discussed relative to a model for the differential graviresponsiveness of plant roots.  相似文献   

13.
Primary roots of Phaseolus vulgaris (Fabaceae) are positively geotropic, while lateral roots are not responsive to gravity In order to elucidate the structural basis for this differential georesponse, we have performed a qualitative and quantitative analysis of the ultrastructure of columella cells of primary and lateral roots of P. vulgaris. Root systems were fixed in situ so as not to disturb the ultrastructure of the columella cells. The columellas of primary roots are more extensive than those of lateral roots. The volumes of columella cells of primary roots are approximately twice those of columella cells of lateral roots. However, columella cells of primary roots contain greater absolute volumes and numbers of all cellular components examined than do columella cells of lateral roots. Also, the relative volumes of cellular components in columella cells of primary and lateral roots are statistically indistinguishable. The endoplasmic reticulum is sparse and distributed randomly in both types of columella cells. Both types of columella cells contain numerous sedimented amyloplasts, none of which contact the cell wall or form complexes with other cellular organelles. Therefore, positive geotropism by roots must be due to a factor(s) other than the presence of sedimented amyloplasts alone. Furthermore, it is unlikely that amyloplasts and plasmodesmata form a multi-valve system that controls the movement of growth regulating substances through the root cap.  相似文献   

14.
Arabidopsis thaliana roots have closed apical organization with three initial tiers. The dermatogen/calyptrogen tier consists of two parts-the central initials form the columella root cap, and the peripheral initial cells form the protoderm (epidermis) and the peripheral root cap. These peripheral initials divide in a sequence to form a root cap consisting of interconnected cones. the periblem initial tier forms the ground meristem (cortex). For the first week after germination the periblem consists of one layer of initial cells. The peripheral cells of the tier divide periclinally and then anticlinally (a T-division) to form the two-layered cortex (outer cortex and endodermis). After about one week, all the peripheral cells have divided periclinally forming two initials; the outermost produces the outer cortex while the inner initial produces the endodermis and middle cortex layer. The latter two cells arise via a periclinal division. During this time, other cells within the tier divide periclinally to form a two-layered tier. The plerome forms the cells of the procambium (vascular cylinder) by simple anticlinal divisions followed by longitudinal divisions to fill out the cell files of the vascular cylinder. A survey (27 dicot species in 17 families) of roots with closed apical organization revealed that there are three different types of root cap-concentric cylinders of cells (e.g.Linum), interconnecting cones (e.g.Arabidopsis) or overlapping arcs (e.g.Gossypium). H Lambers Section editor  相似文献   

15.
MOORE  R. 《Annals of botany》1983,51(6):771-778
A morphometric analysis of the ultrastructure of columella statocytesin primary roots of Zea mays was performed to determine theprecise location of cellular organelles in graviperceptive cells.Vacuoles occupy the largest volume in the cell (11.4 per centof the protoplasm). The nucleus (9.51 per cent), amyloplasts(7.57 per cent), mitochondria (3.42 per cent), spherosomes (2.13per cent) and dictyosomes (0.55 per cent) occupy progressivelysmaller volumes of the statocytes. All organelles are distributedasymmetrically within the cell. Amyloplasts, spherosomes anddictyosomes are found in greatest numbers (and relative volumes)in the lower (i.e. ‘bottom’) third of the cell.The largest numbers and relative volumes of mitochondria arein the lower and middle thirds of the cell. Nuclei tend to befound in the middle third of the statocytes. Only the hyaloplasmis concentrated in the upper (i.e. ‘top’) thirdof Z. mays statocytes. When the sedimentation of amyloplasts(and the resulting exclusion of other organelles from the lowerthird of the cell) is corrected for, all cellular constituentsremain asymmetrically distributed within the cell. Therefore,the sedimentation of amyloplasts alone is not responsible forthe differential distribution of other cellular organelles inZ. mays statocytes. The quantitative ultrastructure of Z. maysstatocytes is discussed relative to the graviperceptive functionof these cells. Zea mays, corn, maize, root cap, stereology, columella, statocytes, graviperception, ultrastructure  相似文献   

16.
C. L. Wenzel  T. L. Rost 《Protoplasma》2001,218(3-4):203-213
Summary The peripheral root cap and protoderm inArabidopsis thaliana are organized into modular packets of cells derived from formative T-divisions of the root cap/protoderm (RCP) initials and subsequent proliferative divisions of their daughter cells. Each module consists of protoderm and peripheral root cap packets derived from the same periclinal T-division event of an RCP initial. Anatomical analyses are used to interpret the history of extensively coordinated cell divisions producing this modular construction. Within a given layer of root cap, the columella and RCP initials divided in a centrifugal sequence from the innermost columella initials toward the RCP initials. All RCP initials in the lineages around the circumference of the root divided nearly simultaneously in waves to form one module prior to the next wave of initial divisions forming a younger module. The peripheral root cap and protoderm packets within each module completed four rounds of proliferative divisions in the axial plane to produce, on average, 16 cells per packet in the basalmost modules in axial view. Peripheral root cap and protoderm cells predominantly in the T-type (trichoblast) lineages also underwent radial divisions as they were displaced basipetally. The regularity in the cellular pattern within the modules suggests a timing mechanism controlling highly coordinated cell division in the initials and their daughter cells.Abbreviations RAM root apical meristem - RCP root cap protoderm - prc peripheral root cap  相似文献   

17.
The root cap is a universal feature of angiosperm, gymnosperm, and pteridophyte roots. Besides providing protection against abrasive damage to the root tip, the root cap is also involved in the simultaneous perception of a number of signals – pressure, moisture, gravity, and perhaps others – that modulate growth in the main body of the root. These signals, which originate in the external environment, are transduced by the cap and are then transported from the cap to the root. Root gravitropism is one much studied response to an external signal. In the present paper, consideration is given to the structure of the root cap and, in particular, to how the meristematic initial cells of both the central cap columella and the lateral portion of the cap which surrounds the columella are organized in relation to the production of new cells. The subsequent differentiation and development of these cells is associated with their displacement through the cap and their eventual release, as “border cells”, from the cap periphery. Mutations, particularly in Arabidopsis, are increasingly playing a part in defining not only the pattern of genetic activity within different cells of the cap but also in revealing how the corresponding wild-type proteins relate to the range of functions of the cap. Notable in this respect have been analyses of the early events of root gravitropism. The ability to image auxin and auxin permeases within the cap and elsewhere in the root has also extended our understanding of this growth response. Images of auxin distribution may, in addition, help extend ideas concerning the positional controls of cell division and cell differentiation within the cap. However, firm information relating to these controls is scarce, though there are intriguing suggestions of some kind of physiological link between the border cells surrounding the cap and mitotic activity in the cap meristem. Open questions concern the structure and functional interrelationships between the root and the cap which surmounts it, and also the means by which the cap transduces the environmental signals that are of critical importance for the growth of the individual roots, and collectively for the shaping of the root system.  相似文献   

18.
Using immunocytochemical techniques and antibodies that specifically recognize xyloglucan (anti-XG), polygalacturonic acid/rhamnogalacturonan I (anti-PGA/RG-I), and methylesterified pectins (JIM 7), we have shown that these polysaccharides are differentially synthesized and localized during cell development and differentiation in the clover root tip. In cortical cells XG epitopes are present at a threefold greater density in the newly formed cross walls than in the older longitudinal walls, and PGA/RG-I epitopes are detected solely in the expanded middle lamella of cortical cell corners, even after pretreatment of sections with pectinmethylesterase to uncover masked epitopes. These results suggest that in cortical cells XG and PGA/RG-I are differentially localized not only to particular wall domains, but also to particular cell walls. In contrast to their nonoverlapping distribution in cortical cells, XG epitopes and PGA/RG-I epitopes largely colocalize in the epidermal cell walls. The results also demonstrate that the middle lamella of the longitudinal walls shared by epidermal cells and by epidermal and cortical cells constitutes a barrier to the diffusion of cell wall and mucilage molecules. Synthesis of XG and PGA/RG-I epitope-containing polysaccharides also varies during cellular differentiation in the root cap. The differentiation of gravitropic columella cells into mucilage-secreting peripheral cells is marked by a dramatic increase in the synthesis and secretion of molecules containing XG and PGA/RG-I epitopes. In contrast, JIM 7 epitopes are present at abundant levels in columella cell walls, but are not detectable in peripheral cell walls or in secreted mucilage. There were also changes in the cisternal labeling of the Golgi stacks during cellular differentiation in the root tip. Whereas PGA/RG-I epitopes are detected primarily in cis- and medial Golgi cisternae in cortical cells (Moore, P. J., K. M. M. Swords, M. A. Lynch, and L. A. Staehelin. 1991. J. Cell Biol. 112:589-602), they are localized predominantly in the trans-Golgi cisternae and the trans-Golgi network in epidermal and peripheral root cap cells. These observations suggest that during cellular differentiation the plant Golgi apparatus can be both structurally and functionally reorganized.  相似文献   

19.
The cap is widely accepted to be the site of gravity sensing in roots because removal of the cap abolishes root curvature. Circumstantial evidence favors the columella cells as the gravisensory cells because amyloplasts (and often other cellular components) are polarized with respect to the gravity vector. However, there has been no functional confirmation of their role. To address this problem, we used laser ablation to remove defined cells in the cap of Arabidopsis primary roots and quantified the response of the roots to gravity using three parameters: time course of curvature, presentation time, and deviation from vertical growth. Ablation of the peripheral cap cells and tip cells did not alter root curvature. Ablation of the innermost columella cells caused the strongest inhibitory effect on root curvature without affecting growth rates. Many of these roots deviated significantly from vertical growth and had a presentation time 6-fold longer than the controls. Among the two inner columella stories, the central cells of story 2 contributed the most to root gravitropism. These cells also exhibited the largest amyloplast sedimentation velocities. Therefore, these results are consistent with the starch-statolith sedimentation hypothesis for gravity sensing.  相似文献   

20.
MOORE  R.; PASIENIUK  J. 《Annals of botany》1984,53(5):715-726
Horizontally oriented primary roots of Ricinus communis aremore graviresponsive than similarly oriented lateral roots.The more pronounced graviresponsiveness of primary roots ispositively correlated with their caps having a more extensivecolumella tissue than caps of lateral roots. Individual columellacells of primary roots contain 2.6 times more protoplasm thando columella cells of lateral roots. Similarly, the absolutevolumes of all cellular components in columella cells of primaryroots are larger than those of lateral roots. However, thereare no statistically significant differences in the relativevolumes of any cellular component in columella cells of primaryvs lateral roots. Endoplasmic reticulum is distributed randomlyin columella cells of both types of roots. Columella cells ofprimary and lateral roots contain numerous sedimented amyloplastswhich do not consistently contact any cellular structure. Nucleitend to be located in the middle thirds of the columella cells,and the vacuole is found in largest concentrations in the middleand upper thirds of columella cells of both types of roots.The largest protoplasmic volumes of mitochondria occur in thelower thirds of columella cells, and dictyosomes are found insimilar concentrations throughout the cells. There is no significantdifference in the intracellular distributions of organellesin columella cells of primary vs lateral roots. We believe thatthe differing graviresponsiveness of primary vs lateral rootsof R. communis is probably due to factors other than the structuresof their individual columella cells. Ricinus communis, columella, graviperception, graviresponsiveness, roots, root cap  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号