首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
水稻条斑病细菌(Xanthomonas oryzae pv.oryzicola,Xooc)决定在非寄主植物上激发过敏反应(hypersensitive response)和在寄主水稻上具致病性(pathogenicity)的hrp基因簇是诱导表达的。为研究hrp基因的功能,利用hpa1和hrpX基因的启动子与gfp基因进行融合,构建了hrp基因诱导表达系统。绿色荧光蛋白表达揭示,Xoochrp基因在营养丰富的NB培养基上不能有效表达,在hrp诱导培养基XOM3上可有效表达。以hrpXhrpG突变体为参照,RT-PCR研究结果提示,Xooc野生型菌株hpa1基因在NB上不能有效表达,在XOM3培养基上可有效表达。相应地,hrpX突变体中hpa1基因不能被诱导表达,而在hrpG突变体中hpa1基因转录表达水平低于野生菌。研究结果还证实,水稻悬浮细胞能高效诱导Xoochrp基因表达。Xooc hrp基因诱导表达系统的建立为研究hrp基因功能、发掘T3SS效应分子以及开展Xooc致病性研究奠定了基础。  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
Erwinia chrysanthemi is a host-promiscuous plant pathogen that possesses a type III secretion system (TTSS) similar to that of the host-specific pathogens E. amylovora and Pseudomonas syringae. The regions flanking the TTSS-encoding hrp/hrc gene clusters in the latter pathogens encode various TTSS-secreted proteins. DNA sequencing of the complete E. chrysanthemi hrp/hrc gene cluster and approximately 12 kb of the flanking regions (beyond the previously characterized hecA adhesin gene in the left flank) revealed that the E. chrysanthemi TTSS genes were syntenic and similar (>50% amino-acid identity) with their E. amylovora orthologs. However, the hrp/hrc cluster was interrupted by a cluster of four genes, only one of which, a homolog of lytic transglycosylases, is implicated in TTSS functions. Furthermore, the regions flanking the hrp/hrc cluster lacked genes that were likely to encode TTSS substrates. Instead, some of the genes in these regions predict ABC transporters and methyl-accepting chemotaxis proteins that could have alternative roles in virulence. Mutations affecting all of the genes in the regions flanking or interrupting the hrp/hrc cluster were constructed in E. chrysanthemi CUCPB5047, a mutant whose reduced pectolytic capacity can enhance the phenotype of minor virulence factors. Mutants were screened in witloof chicory leaves and then in potato tubers and Nicotiana clevelandii seedlings. Mu dII1734 insertion in one gene, designated virA, resulted in strongly reduced virulence in all three tests. virA is immediately downstream of hecA, has an unusually low G+C content of 38%, and predicts an unknown protein of 111 amino acids. The E. chrysanthemi TTSS was shown to be active by its ability to translocate AvrPto-Cya (a P. syringae TTSS effector fused to an adenylate cyclase reporter that is active in the presence of eukaryote calmodulin) into N. benthamiana leaf cells. However, VirA(1-61)-Cya was not translocated into plant cells, and virA expression was not affected by mutations in E. chrysanthemi Hrp regulator genes hrpL and hrpS. Thus, the 44-kb region of the E. chrysanthemi EC16 genome that is centered on the hrplhrc cluster encodes a potpourri of virulence factors, but none of these appear to be a TTSS effector.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号