首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteosarcoma is the most common type of malignant bone cancer, accounting for 35% of primary bone malignancies. Because cancer cells utilize glucose as their primary energy substrate, the expression and regulation of glucose transporters (GLUT) may be important in tumor development and progression. GLUT expression has not been studied previously in human osteosarcoma cell lines. Furthermore, although insulin and insulin-like growth factor (IGF-I) play an important role in cell proliferation and tumor progression, the role of these hormones on GLUT expression and glucose uptake, and their possible relation to osteosarcoma, have also not been studied. We determined the effect of insulin and IGF-I on GLUT expression and glucose transport in three well-characterized human osteosarcoma cell lines (MG-63, SaOs-2, and U2-Os) using immunocytochemical, RT-PCR and functional kinetic analyses. Furthermore we also studied GLUT isoform expression in osteosarcoma primary tumors and metastases by in situ hybridization and immunohistochemical analyses. RT-PCR and immunostaining show that GLUT1 is the main isoform expressed in the cell lines and tissues studied, respectively. Immunocytochemical analysis shows that although insulin does not affect levels of GLUT1 expression it does induce a translocation of the transporter to the plasma membrane. This translocation is associated with increased transport of glucose into the cell. GLUT1 is the main glucose transporter expressed in osteosarcoma, furthermore, this transporter is regulated by insulin in human MG-63 cells. One possible mechanism through which insulin is involved in cancer progression is by increasing the amount of glucose available to the cancer cell.  相似文献   

2.
3.
Malignant cells are known to have accelerated metabolism, high glucose requirements, and increased glucose uptake. Transport of glucose across the plasma membrane of mammalian cells is the first rate-limiting step for glucose metabolism and is mediated by facilitative glucose transporter (GLUT) proteins. Increased glucose transport in malignant cells has been associated with increased and deregulated expression of glucose transporter proteins, with overexpression of GLUT1 and/or GLUT3 a characteristic feature. Oncogenic transformation of cultured mammalian cells causes a rapid increase of glucose transport and GLUT1 expression via interaction with GLUT1 promoter enhancer elements. In human studies, high levels of GLUT1 expression in tumors have been associated with poor survival. Studies indicate that glucose transport in breast cancer is not fully explained by GLUT1 or GLUT3 expression, suggesting involvement of another glucose transporter. Recently, a novel glucose transporter protein, GLUT12, has been found in breast and prostate cancers. In human breast and prostate tumors and cultured cells, GLUT12 is located intracellularly and at the cell surface. Trafficking of GLUT12 to the plasma membrane could therefore contribute to glucose uptake. Several factors have been implicated in the regulation of glucose transporter expression in breast cancer. Hypoxia can increase GLUT1 levels and glucose uptake. Estradiol and epidermal growth factor, both of which can play a role in breast cancer cell growth, increase glucose consumption. Estradiol and epidermal growth factor also increase GLUT12 protein levels in cultured breast cancer cells. Targeting GLUT12 could provide novel methods for detection and treatment of breast and prostate cancer.  相似文献   

4.
Our previous study described a real-time PCR method to quantify microRNA (miRNA) precursors using SYBR green detection [T. D. Schmittgen, J. Jiang, Q. Liu and L. Yang (2004) Nucleic Acids Res., 32, e43]. The present study adapted the assay to a 384-well format and expanded it to include primers to 222 human miRNA precursors. TaqMan minor groove binder probes were used to discriminate nearly identical members of the let-7 family of miRNA isoforms. The miRNA precursor expression was profiled in 32 human cell lines from lung, breast, colorectal, hematologic, prostate, pancreatic, and head and neck cancers. Some miRNA precursors were expressed at similar levels in many of the cell lines, while others were differentially expressed. Clustering analysis of the miRNA precursor expression data revealed that most of the cell lines clustered into their respective tissues from which each cell line was ostensibly derived. miRNA precursor expression by PCR paralleled the mature miRNA expression by northern blotting for most of the conditions studied. Our study provides PCR primer sequences to all of the known human miRNA precursors as of December 2004 and provides a database of the miRNA precursor expression in many commonly used human cancer cell lines.  相似文献   

5.
Glucose metabolism is vital to most mammalian cells, and the passage of glucose across cell membranes is facilitated by a family of integral membrane transporter proteins, the GLUTs. There are currently 14 members of the SLC2 family of GLUTs, several of which have been the focus of this series of reviews. The subject of the present review is GLUT3, which, as implied by its name, was the third glucose transporter to be cloned (Kayano T, Fukumoto H, Eddy RL, Fan YS, Byers MG, Shows TB, Bell GI. J Biol Chem 263: 15245-15248, 1988) and was originally designated as the neuronal GLUT. The overriding question that drove the early work on GLUT3 was why would neurons need a separate glucose transporter isoform? What is it about GLUT3 that specifically suits the needs of the highly metabolic and oxidative neuron with its high glucose demand? More recently, GLUT3 has been studied in other cell types with quite specific requirements for glucose, including sperm, preimplantation embryos, circulating white blood cells, and an array of carcinoma cell lines. The last are sufficiently varied and numerous to warrant a review of their own and will not be discussed here. However, for each of these cases, the same questions apply. Thus, the objective of this review is to discuss the properties and tissue and cellular localization of GLUT3 as well as the features of expression, function, and regulation that distinguish it from the rest of its family and make it uniquely suited as the mediator of glucose delivery to these specific cells.  相似文献   

6.
7.
G W Gould  H M Thomas  T J Jess  G I Bell 《Biochemistry》1991,30(21):5139-5145
We describe the functional expression of three members of the family of human facilitative glucose transporters, the erythrocyte-type transporter (GLUT 1), the liver-type transporter (GLUT 2), and the brain-type transporter (GLUT 3), by microinjection of their corresponding mRNAs into Xenopus oocytes. Expression was determined by the appearance of transport activity, as measured by the transport of 3-O-methyl-D-glucose or 2-deoxy-D-glucose. We have measured the Km for 3-O-methyl-D-glucose of GLUTs 1, 2, and 3, and the results are discussed in light of the possible roles for these different transporters in the regulation of blood glucose. The substrate specificity of these transporter isoforms has also been examined. We show that, for all transporters, the transport of 2-deoxy-D-glucose is inhibited by D-but not by L-glucose. In addition, both D-galactose and D-mannose are transported by GLUTs 1-3 at significant rates; furthermore, GLUT 2 is capable of transporting D-fructose. The nature of the glucose binding sites of GLUTs 1-3 was investigated by using hexose inhibition of 2-deoxy-D-glucose uptake. We show that the characteristics of this inhibition are different for each transporter isoform.  相似文献   

8.
Tumor cells exhibit an altered metabolism characterized by elevated aerobic glycolysis and lactate secretion which is supported by an increase in glucose transport and consumption. We hypothesized that reducing or eliminating the expression of the most prominently expressed glucose transporter(s) would decrease the amount of glucose available to breast cancer cells thereby decreasing their metabolic capacity and proliferative potential.Of the 12 GLUT family glucose transporters expressed in mice, GLUT1 was the most abundantly expressed at the RNA level in the mouse mammary tumors from MMTV-c-ErbB2 mice and cell lines examined. Reducing GLUT1 expression in mouse mammary tumor cell lines using shRNA or Cre/Lox technology reduced glucose transport, glucose consumption, lactate secretion and lipid synthesis in vitro without altering the concentration of ATP, as well as reduced growth on plastic and in soft agar. The growth of tumor cells with reduced GLUT1 expression was impaired when transplanted into the mammary fat pad of athymic nude mice in vivo. Overexpression of GLUT1 in a cell line with low levels of endogenous GLUT1 increased glucose transport in vitro and enhanced growth in nude mice in vivo as compared to the control cells with very low levels of GLUT1.These studies demonstrate that GLUT1 is the major glucose transporter in mouse mammary carcinoma models overexpressing ErbB2 or PyVMT and that modulation of the level of GLUT1 has an effect upon the growth of mouse mammary tumor cell lines in vivo.  相似文献   

9.
It has been proposed that the enhanced metabolic activity of tumor cells is accompanied by an increased expression of facilitative hexose transporters (GLUTs). However, a previous immunohistochemical analysis of GLUT1 expression in 154 malignant human neoplasms failed to detect the GLUT1 isoform in 87 tumors. We used 146 normal human tissues and 215 tumor samples to reassess GLUT1 expression. A similar number of samples were used to compare the expression of GLUT2-6 and 9. The classical expression of GLUT1-5 in different normal human tissues was confirmed, however, we were unable to detect GLUT2 in human pancreatic islet cells. GLUT6 was principally detected in testis germinal cells and GLUT9 was localized in kidney, liver, heart, and adrenal. In tumor samples, GLUT1, 2, and 5 were the main transporters detected. GLUT1 was the most widely expressed transporter, however, 42% of the samples had very low-to-negative expression levels. GLUT2 was detected in 31% of the samples, being mainly expressed in breast, colon, and liver carcinoma. GLUT5 was detected in 27% of breast and colon adenocarcinoma, liver carcinoma, lymphomas, and testis seminoma samples. In situ RT-PCR and ultrastructural immunohistochemistry confirmed GLUT5 expression in breast cancer. GLUT6 and 9 are not clearly over-expressed in human cancer. The extensive expression of GLUT2 and 5 (glucose/fructose and fructose transporters, respectively) in malignant human tissues indicates that fructose may be a good energy substrate in tumor cells. Our functional data obtained in vitro in different tumor cells support this hypothesis. Additionally, these results suggest that fructose uptake could be used for positron emission tomography imaging and, may possibly represent a novel target for the development of therapeutic agents in different human cancers.  相似文献   

10.
Three hexose transporter genes, the Na(+)/glucose cotransporters SGLT1 and SGLT3 (formerly SAAT1/pSGLT2) and the facilitative transporter GLUT1, are expressed in a renal epithelial cell line with proximal tubule characteristics. A number of studies have demonstrated that SGLT1 expression is coupled to the cellular differentiation state and is also negatively regulated by its substrate glucose. In the present study, we demonstrate that SGLT3 mRNA expression is relatively unaffected by conditions promoting dedifferentiation (reseeding to a subconfluent density, activation of protein kinase C) or differentiation (confluent cell density, activation of protein kinase A) nor was expression sensitive to hyperglycemic glucose levels in the medium. We further demonstrate that protein kinase A and protein kinase C exert opposing effects on GLUT1 and SGLT1 mRNA levels in polarized cell monolayers, indicating that GLUT1 mRNA is also highly regulated in polarized epithelial cells by agents affecting cell differentiation. The relatively constitutive expression of SGLT3 mRNA suggests a novel role for this low-affinity Na(+)/glucose cotransporter, to provide concentrative glucose uptake under hyperglycemic conditions where expression of high-affinity glucose cotransporter SGLT1 mRNA is significantly downregulated.  相似文献   

11.
Malignant neoplasms exhibit an elevated rate of glycolysis over normal cells. To target the Warburg effect, we designed a new series of 2-deoxyglucose (2-DG) conjugated platinum (II) complexes for glucose transporter 1 (GLUT1)-mediated anticancer drug delivery. The potential GLUT1 transportability of the complexes was investigated through a comparative molecular docking analysis utilizing the latest GLUT1 protein crystal structure. The key binding site for 2-DG as GLUT1’s substrate was identified with molecular dynamics simulation, and the docking study demonstrated that the 2-DG conjugated platinum (II) complexes can be recognized by the same binding site as potential GLUT1 substrate. The conjugates were synthesized and evaluated for in vitro cytotoxicity study with seven human cancer cell lines. The results of this study revealed that 2-DG conjugated platinum (II) complexes are GLUT1 transportable substrates and exhibit improved cytotoxicities in cancer cell lines that over express GLUT1 when compared to the clinical drug, Oxaliplatin. The correlation between GLUT1 expression and antitumor effects are also confirmed. The study provides fundamental information supporting the potential of the 2-DG conjugated platinum (II) complexes as lead compounds for further pharmaceutical R&D.  相似文献   

12.
Facilitated glucose transporters (GLUTs) mediate transport of sugars across cell membranes by using the chemical gradient of sugars as the driving force. Improved cloning techniques and database analyses have expanded this family of proteins to a total of 14 putative members. In this work a novel hexose transporter isoform, GLUT7, has been cloned from a human intestinal cDNA library by using a PCR-based strategy (GenBank accession no. AY571960). The encoded protein is comprised of 524 amino acid residues and shares 68% similarity and 53% identity with GLUT5, its most closely related isoform. When GLUT7 was expressed in Xenopus oocytes, it showed high-affinity transport for glucose (K(m) = 0.3 mM) and fructose (IC(50) = 0.060 mM). Galactose, 2-deoxy-d-glucose, and xylose were not transported. Uptake of 100 microM d-glucose was not inhibited by 200 microM phloretin or 100 microM cytochalasin B. Northern blotting indicated that the mRNA for GLUT7 is present in the human small intestine, colon, testis, and prostate. Western blotting and immunohistochemistry of rat tissues with an antibody raised against the predicted COOH-terminal sequence confirmed expression of the protein in the small intestine and indicated that the transporter is predominantly expressed in the enterocytes' brush-border membrane. The unusual substrate specificity and close sequence identity with GLUT5 suggest that GLUT7 represents an intermediate between class II GLUTs and the class I member GLUT2. Comparison between these proteins may provide key information as to the structural determinants for the recognition of fructose as a substrate.  相似文献   

13.
The hexose transporter family, which mediates a facilitated uptake in mammalian cells, consists of more than 10 members containing 12 membrane-spanning segments with a single N-glycosylation site. However, it remains unknown how these isoforms are functionally organized in the membrane domains. In this report, we describe a differential distribution of the glucose transporter isoforms GLUT1 and GLUT3 to detergent-resistant membrane domains (DRMs) in non-polarized mammalian cells. Whereas more than 80% of cellular proteins containing GLUT3 in HeLa cell lines was solubilized by a non-ionic detergent (either Triton X-100 or Lubrol WX) at 4 degrees C, GLUT1 remained insoluble together with the DRM-associated proteins, such as caveolin-1 and intestinal alkaline phosphatase (IAP). These DRM-associated proteins and the ganglioside GM1 were shown to float to the upper fractions when Triton X-100-solubilized cell extracts were centrifuged on a density gradient. In contrast, GLUT3 as well as most soluble proteins remained in the lower layers. Furthermore, perturbations of DRMs due to depletion of cholesterol by methyl-beta-cyclodextrin (m beta CD) rendered GLUT1 soluble in Triton X-100. Immunostaining patterns for these isoforms detected by confocal laser scanning microscopy in a living cell were also distinctive. These results suggest that in non-polarized mammalian cells, GLUT1 can be organized into a raft-like DRM domain but GLUT3 may distribute to fluid membrane domains. This differential distribution may occur irrespective of the N-glycosylation state or cell type.  相似文献   

14.
Growth factors, mitogens, oncogenes and the regulation of glucose transport   总被引:8,自引:0,他引:8  
The erythrocyte (or HepG2/brain) type glucose transporter (GLUT 1) was the first of the family of facilitative glucose transporter proteins to be cloned [M. Mueckler et al., Science 229, 941–945, 1985]. GLUT 1 is expressed in most tissue types, all cells lines, transformed cells and tumour cells. It is thought to be responsible for ‘housekeeping’ levels of glucose transport, i.e. the uptake of glucose required for oxidative phosphorylation. The rate of glucose transport via GLUT 1 can be regulated under conditions in which the metabolic rate must be adjusted such as cell division (mitosis and meiosis), differentiation, transformation and nutrient starvation. Here we review the recent literature on the control of glucose transport of mitogens, growth factors and oncogenes, and discuss some of the implications for the integration of cellular signalling pathways and cell growth.  相似文献   

15.
16.
Glucose uptake and metabolism are essential for proliferation and survival of cells, and are supposed to be enhanced in actively proliferating cell systems such as embryonic and cancer tissues. Glucose uptake is usually carried out through glucose transporters. In the developing fetal lung, metabolism of glucose is thought to be an important process in cell proliferation, differentiation and maturation. Active glucose uptake could result in accumulation of glycogen in epithelial cells, and utilization of glycogen could be a critical phenomenon for lung epithelial development. In hamsters, although facilitative glucose transporter isoform 1 (GLUT1) and isoform 4 (GLUT4) are not detected in adult lungs, expression of them is detected with immunohistochemical and Western blot analyses in the developing fetal lungs. In human lung carcinomas, GLUT1 expression is seen in most cases of lung carcinoma, and is seen especially frequently in squamous cell carcinoma. GLUT1 expression in adenocarcinoma of the lung is correlated with reduced cell differentiation, larger tumor size and positive lymph node metastasis. A few cases of lung carcinoma show positive staining for GLUT3 and GLUT4. Thus, expression of some facilitative glucose transporter isoforms is detected in developing fetal epithelium and in lung carcinomas. Overexpression of them could enhance uptake of glucose into these cells, and the increased influx of glucose could be involved in active cell proliferation, which is a common character of the developing lung epithelium and carcinoma.  相似文献   

17.
A new impermeant photoaffinity label has been used for identifying cell surface glucose transporters in isolated rat adipose cells. This compound is 2-N-4(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis(D-mannos-4- yloxy)-2- propylamine. We have used this reagent in combination with immunoprecipitation by specific antibodies against the GLUT4 and GLUT1 glucose transporter isoforms to estimate the relative abundance of these two transporters on the surface of the intact adipose cell following stimulation by insulin and phorbol 12-myristate 13-acetate (PMA). In the basal state, GLUT4 and GLUT1 are both present at the cell surface but GLUT4 is more abundant than GLUT1. In response to insulin, GLUT4 increases 15-20-fold and GLUT1 increases approximately 5-fold while 3-O-methyl-D-glucose transport is stimulated 20-30-fold. By contrast, PMA only induces a approximately 4-fold increase in GLUT4 while GLUT1 increases approximately 5-fold to the same level as seen with insulin. In addition, PMA stimulates 3-O-methyl-D-glucose transport approximately 3-fold to only 13% of the insulin-stimulated state. Thus GLUT4 is the major glucose transporter isoform under all conditions, and it is selectively and markedly enriched in response to insulin but not PMA which increases GLUT1 and GLUT4 equally. Furthermore, stimulation of glucose transport activity correlates closely with the appearance of GLUT4 on the cell surface in response to both insulin and PMA but does not correlate with the sum of GLUT1 and GLUT4 appearance. These results suggest that GLUT4 may be inherently more active than GLUT1 due to a higher TK (turnover/Km).  相似文献   

18.
19.
Glucose is the basic source of energy for mammalian cells. The energy-independent transport of glucose down its concentration gradient is mediated by the facilitative glucose transporter family (GLUT). It has long been recognised that glucose transporter genes are overexpressed in many human cancer cells, to help provide extra energy for the rapid growth of cancer cells. In the present study, antisense oligonucleotides and plasmid-derived antisense RNA against GLUT-1 gene were synthesized and transfected into human leukemia HL-60 cells to investigate the effect of these antisense nucleic acids on tumour growth. Our results show that antisense nucleic acids inhibited the proliferation of HL-60 cells by 50-60% and the mRNA expression of GLUT-1 gene was suppressed as detected by Northern hybridization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号