首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied synergism between adrenaline (epinephrine) and low concentrations of thrombin in gel-filtered human platelets prelabelled with [32P]Pi. Suspensions of platelets, which did not contain added fibrinogen, were incubated at 37 degrees C to measure changes in the levels of 32P-labelled phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP) and phosphatidate (PA), aggregation and dense-granule secretion after stimulation. Adrenaline alone (3.5-4.0 microM) did not cause a change in any parameter (phosphoinositide metabolism, aggregation and dense-granule secretion), but markedly enhanced the thrombin-induced responses over a narrow range of thrombin concentrations (0.03-0.08 units/ml). The thrombin-induced hydrolysis of inositol phospholipids by phospholipase C, which was measured as the formation of [32P]PA, was potentiated by adrenaline, as was the increase in the levels of [32P]PIP2 and [32P]PIP. The presence of adrenaline caused a shift to the left for the thrombin-induced changes in the phosphoinositide metabolism, without affecting the maximal levels of 32P-labelled compounds obtained. A similar shift by adrenaline in the dose-response relationship was previously demonstrated for thrombin-induced aggregation and dense-granule secretion. Also, the narrow range of concentrations of thrombin over which adrenaline potentiates thrombin-induced platelet responses is the same for changes in phosphoinositide metabolism and physiological responses (aggregation and dense-granule secretion). Our observations clearly indicate that adrenaline directly or indirectly influences thrombin-induced changes in phosphoinositide metabolism.  相似文献   

2.
The initial step in the interaction of thrombin with human platelets in binding of the enzyme to the platelet surface. The effects of digestion of isolated platelets with trypsin and neuraminidase on aggregation, release of serotonin and binding of thrombin have been examined.Trypsin is a powerful inducer of platelet aggregation as well as the release reaction. The aggregation effect of trypsin may be blocked with disodium ehtylenediaminetatraacetate (EDTA). Further, in the presence of EDTA, trypsin-induced release of [14C]serotonin is 15–20% lower compared to controls and the initial lag period is prolonged. Conditions were developed under which trypsin did neither aggregate nor release serotonin from platelets. Even under these conditions, trypsin caused a profound loss in the thrombin binding capacity of platelets. Thus, the trypsin-induced fall in the thrombin binding capacity and the platelet response are dissociated. This loss in the thrombin binding by trypsin is due to a lower number of binding sites available on the platelet surface and is not due to an altered affinity.Neuraminidase did not induce platelet aggregation or the release reaction. The ability of platelets to bind thrombin was also unimpaired by prior digestion with neuraminidase. Thus, the sialic acid at the platelet surface is not essential in the function of thrombin recognition by the receptor. This moiety may nontheless be a constituent of a glycoprotein which might act as the thrombin receptor.  相似文献   

3.
Electrorotation of single platelets was compared with [14C]serotonin release, aggregation and electron microscopy. Activation of washed and degranulated platelets was induced by thrombin, arachidonic acid, collagen, adrenaline, platelet activation factor (PAF), ADP and A23187. A strong correlation between electrorotation decrease and serotonin release was found. Electrorotation did not correlate with aggregation. It was concluded that an increase of the specific conductivity of the platelet membrane by three orders of magnitude (approx. 1.0.10(-7) S.m-1 to 1.0.10(-4) S.m-1) upon activation was responsible for the observed decrease of anti-field rotation and the shift of the first characteristic frequency towards higher values. Electrorotation allowed for time-dependent measurements of activation. Characteristic activation times in the order of minutes were found. There was the following sequence of activators classified by increasing activation time constants: A23187 was the fastest followed by thrombin, collagen, PAF, arachidonic acid, adrenaline, and ADP.  相似文献   

4.
EL-4 tumor cells were assayed in vitro for their ability to aggregate two kinds of platelets. An inhibition study showed that the EL-4 tumor cell can induce platelet aggregation by at least two different mechanisms. One, mediated by thrombin, was dominant with rabbit platelets because hirudin, which specifically inhibits thrombin, considerably suppressed the rabbit platelet aggregation induced by EL-4 tumor cells. In contrast, EL-4 cells induced the aggregation of human platelets even in citrated PRP. It is the apyrase-sensitive pathway that is believed to work in human platelets. The human platelet responses to EL-4 tumor cells clearly differed from those of rabbit platelets in terms of inhibition by hirudin and apyrase and of reactivity in citrated PRP. Both phospholipase A2 and dibutyryl cAMP strongly inhibited EL-4 tumor cell-induced platelet aggregation in both rabbit and human platelets. These two compounds may block a vital step in platelet aggregation that is elicited by the EL-4 tumor cells. Our results show that human platelet response to tumor cells is not necessarily deducible from experimental data obtained with animal platelets.  相似文献   

5.
Superoxide anion is produced in human platelets predominantly by Nox2-dependent NADPH oxidases. In vitro experiments have shown that it might play a role in modulating platelet functions. The relationship between platelet superoxide production and aggregation remains poorly defined. Accordingly, we aimed to study superoxide production and aggregation in platelets from subjects with significant cardiovascular risk factors (hypertension, hypercholesterolemia, smoking and diabetes mellitus) and from control individuals. Moreover, we studied the effects of novel polyphenol-rich extracts of Aronia melanocarpa (chokeberry) berries on platelet function in vitro. Superoxide production was significantly increased in patients with cardiovascular risk profile when compared to controls, while platelet aggregation in response to either collagen or thrombin were borderline higher, and did not reach statistical significance. Interestingly, no relationship was observed between platelet aggregation ex vivo and platelet superoxide production in either of studied groups. No correlation was found between endothelial function (measured by FMD) and platelet aggregation ex vivo either. Polyphenol-rich extracts of A. melanocarpa berries caused a significant concentration dependent decrease in superoxide production only in patients with cardiovascular risk factors, while no effect was observed in the control group. A. melanocarpa extracts abolished the difference in superoxide production between risk factor patients and controls. A. melanocarpa extracts exerted significant concentration dependent anti-aggregatory effects in both studied groups, which indicated that these effects may be independent of it's ability to modulate superoxide production. The anti-aggregatory effects of chokeberry extracts were similar irrespective of aggregation inducing agent (collagen or thrombin). Moreover, they appear to be independent of platelet NO release as NOS inhibition by L-NAME did not lead to their abrogation.  相似文献   

6.
Using simultaneous recording of aggregation and chemiluminescence, responses of human polymorphonuclear leukocytes, blood platelets and their mixture were investigated after stimulation by specific as well as non-specific stimuli for each cell. In our experimental settings, aggregation of platelets and PMN leukocytes was increased in the following order of stimuli: PMA相似文献   

7.
Native DNA (dsDNA) was found to induce the aggregation of isolated human platelets and the release of platelet 5HT; this activation was inhibited by both theophylline and TYA, suggesting a role for cAMP and metabolic products formed from arachidonate. By contrast, nonaggregating amounts of dsDNA inhibited platelet activation induced by collagen or thrombin. This inhibition, which could be overcome by use of greater amounts of the stimulatory agents, was not associated with the loss of platelet viability. Activation of platelets by dsDNA was not observed in plasma or in isolated platelet systems to which small amounts of cell-free plasma were added. However, dsDNA maintained in plasma its ability to inhibit platelet aggregation induced by collagen and thrombin. RNA and single-stranded DNA failed to induce platelet aggregation or release of 5HT and to block the platelet activation stimulated by dsDNA. Further, dsDNA did not significantly inhibit platelet aggregation in platelet-rich plasma stimulated by ADP or epinephrine. These data implicate dsDNA as a selective and potentially important activator and modulator of platelet responsiveness.  相似文献   

8.
Adrenaline or UK 14304 (a specific alpha 2-adrenoceptor agonist) and phorbol ester (phorbol 12,13-dibutyrate; PdBu) or bioactive diacylglycerols (sn-1,2-dioctanoylglycerol; DiC8) synergistically induced platelet aggregation and ATP secretion. The effect on aggregation was more pronounced than the effect on secretion, and it was observed in aspirinized, platelet-rich plasma or suspensions of washed aspirinized platelets containing ADP scavengers. No prior shape change was found. In the presence of adrenaline, DiC8 induced reversible aggregation and PdBu evoked irreversible aggregation that correlated with the different kinetics of DiC8- and PdBu-induced protein kinase C activation. Adrenaline and UK 14304 did not induce or enhance phosphorylation induced by DiC8 or PdBu of myosin light chain (20 kDa), the substrate of protein kinase C (47 kDa), or a 38 kDa protein. Immunoprecipitation studies using a Gcommon alpha antiserum or a Gi alpha antiserum showed that Gi alpha is not phosphorylated after exposure of platelets to PdBu or PdBu plus adrenaline. Adrenaline, PdBu or adrenaline plus PdBu did not cause stimulation of phospholipase C as reflected in production of [32P]phosphatidic acid. Adrenaline caused a small increase of Ca2+ in the platelet cytosol of platelets loaded with Indo-1; this effect was also observed in the absence of extracellular Ca2+. However, under conditions of maximal aggregation induced by adrenaline plus PdBu, no increase of cytosolic Ca2+ was observed. Platelet aggregation induced by PdBu plus adrenaline was not inhibited by a high intracellular concentration of the calcium chelator Quin-2. These experiments indicate that alpha 2-adrenoceptor agonists, known to interact with Gi, and protein kinase C activators synergistically induced platelet aggregation through a novel mechanism. The synergism occurs distally to Gi protein activation and protein kinase C-dependent protein phosphorylation and does not involve phospholipase C activation or Ca2+ mobilization.  相似文献   

9.
Quantitative studies were carried out of the in vitro and ex vivo effects of phenylbutazone and 3-oxoalkyl substituted diphenyldioxopyrazolidines (kebuzone, tribuzone, benzopyrazone) on platelet aggregation. The specified pyrazolidine derivatives exhibited in vitro inhibitory effects on secondary platelet aggregation (induced by adrenaline and collagen), commensurable with the effects of sulfinpyrazone. The ex vivo efficacy was markedly influenced by the height of the drug level in blood and by differences in the elimination kinetics of the pyrazolidine derivatives in human organism. Inhibitory activities against primary aggregation (induced by ADP and thrombin) were found in vitro mainly in the phenyloxoalkyl derivative of diphenyldioxopyrazolidine (benzopyrazone) and its analogues. By substitution on the phenyl attached to its alkyl side chain (for example, by a halogen in the meta position), compounds were obtained which also possessed higher activities inhibiting secondary platelet aggregation.  相似文献   

10.
The activation of plasmin from its circulating precursor plasminogen is the mechanism of several clot-busting drugs used to clinically treat patients who have suffered a stroke; however, plasmin thus generated has been shown to activate platelets directly. There has been speculation as to whether plasmin interacts with the protease-activated receptors (PARs) because of its similarity in amino acid specificity with the classic platelet activator thrombin. We have investigated whether plasmin activates platelets via PAR activation through multiple complementary approaches. At concentrations sufficient to induce human platelet aggregation, plasmin released very little calcium compared with that induced by thrombin, the PAR-1 agonist peptide SFLLRN, or the PAR-4 agonist peptide AYPGKF. Stimulation of platelets with plasmin initially failed to desensitize additional stimulation with SFLLRN or AYPGKF, but a prolonged incubation with plasmin desensitized platelets to further stimulation by thrombin. The desensitization of PAR-1 had no effect on plasmin-induced platelet aggregation and yielded an aggregation profile that was similar to plasmin in response to a low dose of thrombin. However, PAR-4 desensitization completely eliminated aggregation in response to plasmin. Inclusion of the PAR-1-specific antagonist BMS-200261 inhibited platelet aggregation induced by a low dose of thrombin but not by plasmin. Additionally, mouse platelets naturally devoid of PAR-1 showed a full aggregation response to plasmin in comparison to thrombin. Furthermore, human and mouse platelets treated with a PAR-4 antagonist, as well as platelets isolated from PAR-4 homozygous null mice, failed to aggregate in response to plasmin. Finally, a protease-resistant recombinant PAR-4 was refractory to activation by plasmin. We conclude that plasmin induces platelet aggregation primarily through slow cleavage of PAR-4.  相似文献   

11.
In stimulated human platelets dense-granule secretion in response to the 'weak agonists' ADP, adrenaline, platelet activating factor and low concentrations of thrombin as well as Ca2+ mobilisation in response to thrombin are enhanced by a Na+/H+ exchanger. In the present study the role of this antiport in collagen stimulated human platelets was examined. While stimulation of platelets loaded with the fluorescent intracellular pH-sensitive dye, bis-carboxyethyl-5-(6)-carboxyfluorescein (BCECF) with thrombin resulted in the activation of the Na+/H+ exchanger, activation of this antiport did not occur in collagen-stimulated platelets. The lack of antiport activity in response to collagen using BCECF-loaded platelets correlated with the lack of any functional role of the antiport in collagen stimulated platelets. In the presence of a Na+/H+ exchange inhibitor, ethylisopropylamiloride, neither collagen-induced platelet aggregation or dense-granule secretion was affected. Furthermore, while the removal of extracellular Na+ (Na+ext), a condition that also prevents activation of the antiport, inhibited dense-granule secretion in response to a low concentration of thrombin, collagen-induced secretion was potentiated. This potentiatory effect could not be attributed to changes in either the membrane potential or in collagen-induced phospholipase C or protein kinase C activity. The present results indicate that in contrast to the 'weak agonists' (1) collagen-induced platelet activation does not require activation of the Na+/H+ exchanger and (2) Na+ext per se is an inhibitor of collagen-induced secretion.  相似文献   

12.
Electrorotation of single platelets was compared with [14C]serotonin release, aggregation and electron microscopy. Activation of washed and degranulated platelets was induced by thrombin, arachidonic acid, collagen, adrenaline, platelet activation factor (PAF (PA), ADP and A23187. A strong correlation between electrorotation decrease and serotonin release was found. Electrorotation did not correlate with aggregation. It was concluded that an increase of the specific conductivity of the platelet membrane by three orders of magnitude (approx. 1.0–10−7 S · m−1 to 1.0·10−4 S · m−1) upon activation was responsible for the observed decrease of anti-field rotation and the shift of the first characteristic frequency towards higher values. Electrorotation allowed for time-dependent measurements of activation. Characteristic activation times in the order of minutes were found. There was the following sequence of activators classified by increasing activation time constants: A23187 was the fastest followed by thrombin, collagen, PAF, arachidonic acid, adrenaline, and ADP.  相似文献   

13.
The aggregation of human platelets by adrenaline and adenosine di-phosphate (ADP) and its inhibition by β-blockers was studied by measuring the light transmission of plateletrich plasma (PRP) and suspensions of washed platelets exposed to these agents. Inhibition of aggregation of PRP and washed platelets was dose related in the two β-blockers tested: propranolol and pindolol. The potent β-blockers pindolol was less inhibitory than propranolol when adrenaline and ADP were used to induce platelet aggregation. The aggregation of platelets by adrenaline has two phases. With low doses of the blockers only the second phase was inhibited whereas higher doses blocked both phases. Preincubation of human platelets (PRP and washed platelets) with both blockers per se resulted in release of 14C-labelled serotonin. Propranolol released more serotonin than pindolol. There was no concomitant release of lactic dehydrogenase. It is concluded that the effects of propranolol and pindolol on platelets do not correlate with the β-blocking activity of these agents. Rather, the more lypophilic agent, propranolol, is more active both in inhibition of aggregation and in releasing platelet serotonin. It is suggested that these actions of the drugs are related to their non-specific membrane effects.  相似文献   

14.
Gel-filtrated human platelets were stimulated with thrombin in the absence and presence of adrenaline. Adrenaline markedly enhanced the thrombin-induced increase in cytoplasmic pH (pHi) in BCECF-loaded platelets. This rise in pHi was strongly inhibited by the Na+/H+ exchange blocker EIPA. The potentiation by adrenaline of thrombin-induced PLC activation measured as [32P]PA formation and final platelet responses was, however, not blocked by EIPA, even at low concentrations of thrombin. These results indicate that the enhancement by adrenaline of thrombin-induced cytoplasmic alkalinization may be a secondary effect which is not essential for the potentiation by adrenaline of platelet activation by thrombin.  相似文献   

15.
Platelet activation at sites of vascular injury is essential for primary hemostasis, but also underlies arterial thrombosis leading to myocardial infarction or stroke. Platelet activators such as adenosine diphosphate, thrombin or thromboxane A(2) (TXA(2)) activate receptors that are coupled to heterotrimeric G proteins. Activation of platelets through these receptors involves signaling through G(q), G(i) and G(z) (refs. 4-6). However, the role and relative importance of G(12) and G(13), which are activated by various platelet stimuli, are unclear. Here we show that lack of Galpha(13), but not Galpha(12), severely reduced the potency of thrombin, TXA(2) and collagen to induce platelet shape changes and aggregation in vitro. These defects were accompanied by reduced activation of RhoA and inability to form stable platelet thrombi under high shear stress ex vivo. Galpha(13) deficiency in platelets resulted in a severe defect in primary hemostasis and complete protection against arterial thrombosis in vivo. We conclude that G(13)-mediated signaling processes are required for normal hemostasis and thrombosis and may serve as a new target for antiplatelet drugs.  相似文献   

16.
5'-p-Fluorosulfonylbenzoyl adenosine (FSBA), a nucleotide analog of ADP, has been shown to inhibit ADP-induced shape change, aggregation and exposure of fibrinogen binding sites concomitant with covalent modification of a single surface membrane polypeptide of Mr 100,000 (aggregin). Since thrombin can aggregate platelets which have been modified by FSBA and are refractory to ADP, we tested the hypothesis that thrombin-induced platelet aggregation might involve cleavage of aggregin. At a low concentration of thrombin (0.05 U/ml), platelet aggregation, exposure of fibrinogen receptors and cleavage of aggregin in FSBA-modified platelets did not occur, indicating ADP dependence. In contrast, incubation of [3H]FSBA-labeled intact platelets with a higher concentration of thrombin (0.2 U/ml) resulted in cleavage of radiolabeled aggregin, aggregation, and exposure of fibrinogen binding sites. Under identical conditions, aggregin in membranes isolated from [3H]FSBA-labeled platelets was not cleaved by thrombin. Thrombin-induced platelet aggregation and cleavage of aggregin were concomitantly inhibited by a mixture of 2-deoxy-D-glucose, D-gluconic acid 1,5-lactone, and antimycin A. These results suggest that thrombin cleaves aggregin indirectly by activating an endogeneous protease. Thrombin is known to elevate intracellular Ca2+ concentration and thereby activates intracellular calcium dependent thiol proteases (calpains). In contrast to serine protease inhibitors, calpain inhibitors including leupeptin, antipain, and ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid (chelator of Ca2+) inhibited platelet aggregation and cleavage of aggregin in [3H]FSBA-labeled platelets. Leupeptin, at a concentration of 10-20 microM, used in these experiments, did not inhibit the amidolytic activity of thrombin, thrombin-induced platelet shape change, or the rise in intracellular Ca2+. Purified platelet calpain II caused aggregation of unmodified and FSBA-modified platelets and cleaved aggregin in [3H]FSBA-labeled platelets as well as in isolated membranes. The latter is in marked contrast to the action of thrombin on [3H]FSBA-labeled membranes. Thus, thrombin-induced platelet aggregation may involve intracellular activation of calpain which proteolytically cleaves aggregin thus unmasking latent fibrinogen receptors, a necessary prerequisite for platelet aggregation.  相似文献   

17.
We have investigated mechanisms involved in integrin-mediated signal transduction in platelets by examining integrin-dependent phosphorylation and activation of a newly identified protein tyrosine kinase, pp125FAK (FAK, focal adhesion kinase). This kinase was previously shown to be localized in focal adhesions in fibroblasts, and to be phosphorylated on tyrosine in normal and Src-transformed fibroblasts. We show that thrombin and collagen activation of platelets causes an induction of tyrosine phosphorylation of pp125FAK and that pp125FAK molecules isolated from activated platelets display enhanced levels of phosphorylation in immune-complex kinase assays. pp125FAK was not phosphorylated on tyrosine after thrombin or collagen treatment of Glanzmann's thrombasthenic platelets deficient in the fibrinogen receptor GPIIb-IIIa, or of platelets pretreated with an inhibitory monoclonal antibody to GP IIb-IIIa. Fibrinogen binding to GP IIb-IIIa was not sufficient to induce pp125FAK phosphorylation because pp125FAK was not phosphorylated on tyrosine in thrombin-treated platelets that were not allowed to aggregate. These results indicate that tyrosine phosphorylation of pp125FAK is dependent on platelet aggregation mediated by fibrinogen binding to the integrin receptor GP IIb-IIIa. The induction of tyrosine phosphorylation of pp125FAK was inhibited in thrombin- and collagen-treated platelets preincubated with cytochalasin D, which prevents actin polymerization following activation. Under all of these conditions, there was a strong correlation between the induction of tyrosine phosphorylation of pp125FAK in vivo and stimulation of the phosphorylation of pp125FAK in vitro in immune-complex kinase assays. This study provides the first genetic evidence that tyrosine phosphorylation of pp125FAK is dependent on integrin-mediated events, and demonstrates that there is a strong correlation between tyrosine phosphorylation of pp125FAK in platelets, and the activation of pp125FAK-associated phosphorylating activity in vitro.  相似文献   

18.
A nonagglutinating derivative of wheat germ agglutinin has been prepared and used as a probe to explore the initial events in platelet activation. The lectin derivative had no effect on platelet aggregation by adenosine diphosphate, collagen, ristocetin, wheat germ agglutinin or trypsin but aggregation induced by epinephrine or thrombin was inhibited. Unlike thrombin, the inhibition of aggregation by the derivative could not be overcome by increasing the concentration of epinephrine. The derivative did not affect the binding of [3H]dihydroergocryptine to platelets. A 74,000 dalton protein isolated from platelet membranes by lectin affinity chromatography strongly inhibited platelet activation by thrombin but not by epinephrine. The receptors for thrombin and for epinephrine on platelets are different but they are closely linked.  相似文献   

19.
Thrombin and trypsin induce serotonin release and aggregation in human platelets. Both proteases induce activation of phospholipase C as reflected by formation of inositol phosphates and phosphorylation of the resultant 1,2-diacylglycerol to phosphatidic acid. Also, thrombin and trypsin activate protein kinase C and myosin light chain kinase as indicated, respectively, by phosphorylation of the 40,000 and 20,000 dalton proteins. Leupeptin, a known inhibitor of serine proteases, blocks all the observed responses of human platelets to trypsin and thrombin. Leupeptin does not inhibit serotonin release and aggregation induced by other platelet stimuli such as collagen, platelet-activating factor, ionophore A23187, and arachidonic acid. The implication of a proteolytic-mediated pathway in the transmembrane signalling involved in platelet activation is discussed.  相似文献   

20.
It was found that duodenase, a serine protease from the bovine duodenum, activates rat peritoneal mast cells (PMC) in vitro presumably via protease-activated receptors (PARs). Like thrombin (a serine protease from the blood coagulation system) and the PAR1 agonist peptide (PAR1-AP), duodenase was shown to accelerate the secretion of β-hexosaminidase (a marker of cell degranulation) by PMC in a dose-dependent manner. The blockage of the proteolytic activity of duodenase toward the substrate Tos-Gly-Pro-Lys-pNA by the soybean Bauman-Birk protease inhibitor substantially reduced (by 40%) the ability of duodenase to stimulate the secretory activity of PMC. Pretreatment of PMC with duodenase decreased the β-hexosaminidase secretion induced by thrombin and PAR1-AP by 35 and 41.7 %, respectively, and abolished the antiinflammatory effect of activated protein C. At the same time, pretreatment of PMC with duodenase did not affect the secretion of β-hexosaminidase induced by compound 48/80, a nonspecific degranulator of mast cells. Duodenase, unlike PAR1-AP (30–100 μM), in a broad concentration range (10–100 nM) did not induce aggregation of human platelets, but suppressed the platelet aggregation elicited by PAR1-AP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号