首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein serine/threonine phosphatase 4 (PP4c) is an essential polypeptide involved in critical cellular processes such as microtubule growth and organization, DNA damage checkpoint recovery, apoptosis, and tumor necrosis factor alpha signaling. Like other phosphatases of the PP2A family, PP4c interacts with regulatory proteins, which specify substrate targeting and intracellular localization. The identification of these regulatory proteins is, therefore, key to fully understanding the function of this enzyme class. Here, using a sensitive affinity purification/mass spectrometry approach, we identify a novel, stable cytosolic PP4c interacting partner, KIAA1622, which we have renamed PP4R4. PP4R4 displays weak sequence homology with the A (scaffolding) subunit of the PP2A holoenzyme and specifically associates with PP4c (and not with the related PP2Ac or PP6c phosphatases). The PP4c.PP4R4 interaction is disrupted by mutations analogous to those abrogating the association of PP2Ac with PP2A A subunit. However, unlike the PP2A A subunit, which plays a scaffolding role, PP4R4 does not bridge PP4c with previously characterized PP4 regulatory subunits. PP4c.PP4R4 complexes exhibit phosphatase activity toward a fluorogenic substrate and gammaH2AX, but this activity is lower than that associated with the PP4c.PP4R2.PP4R3 complex, which itself is less active than the free PP4c catalytic subunit. Our data demonstrate that PP4R4 forms a novel cytosolic complex with PP4c, independent from the complexes containing PP4R1, PP4R2.PP4R3, and alpha4, and that the regulatory subunits of PP4c have evolved different modes of interaction with the catalytic subunit.  相似文献   

2.
Characterization of mammalian eIF4E-family members.   总被引:7,自引:0,他引:7  
The translational factor eukaryotic initiation factor 4E (eIF4E) is a central component in the initiation and regulation of translation in eukaryotic cells. Through its interaction with the 5' cap structure of mRNA, eIF4E functions to recruit mRNAs to the ribosome. The accumulation of expressed sequence tag sequences has allowed the identification of three different eIF4E-family members in mammals termed eIF4E-1, eIF4E-2 (4EHP, 4E-LP) and eIF4E-3, which differ in their structural signatures, functional characteristics and expression patterns. Unlike eIF4E-1, which is found in all eukaryotes, orthologues for eIF4E-2 appear to be restricted to metazoans, while those for eIF4E-3 have been found only in chordates. Like prototypical eIF4E-1, eIF4E-2 was found to be ubiquitously expressed, with the highest levels in the testis. Expression of eIF4E-3 was detected only in heart, skeletal muscle, lung and spleen. Similarly to eIF4E-1, both eIF4E-2 and eIF4E-3 can bind to the mRNA cap-structure. However, in contrast to eIF4E-1 which interacts with both the scaffold protein, eIF4G and the translational repressor proteins, the eIF4E-binding proteins (4E-BPs), eIF4E-2 and eIF4E-3 each possesses a range of partial activities. eIF4E-2 does not interact with eIF4G, but does interact with 4E-BPs. Conversely, eIF4E-3 interacts with eIF4G, but not with 4E-BPs. Neither eIF4E-2 nor eIF4E-3 is able to rescue the lethality of eIF4E gene deletion in yeast. It is hypothesized that each eIF4E-family member fills a specialized niche in the recruitment of mRNAs by the ribosome through differences in their abilities to bind cap and/or to interact with eIF4G and the 4E-BPs.  相似文献   

3.
Mbemba E  Saffar L  Gattegno L 《FEBS letters》2002,514(2-3):209-213
CXCR4 is a coreceptor, along with CD4, for human immunodeficiency virus type 1 (HIV-1). Trimolecular complexes between HIV-1 glycoprotein (gp)120, CD4 and CXCR4 constitute a prerequisite for HIV entry. We studied whether CD4 is associated with CXCR4 on CD4+ CXCR4+ cells. Using the conformation-dependent anti-CXCR4 mAb 12G5, CD4 was coimmunoprecipitated with CXCR4 from the membrane of U937 cells which support HIV-1(LAI) efficient infection, and from that of peripheral blood lymphocytes (PBL). CD4 association with CXCR4 increased upon PBL coculture for 5 days with autologous monocytes, decreased upon treatment of the cells or the CD4-CXCR4 complex with either N-glycanase or stromal cell derived factor-1alpha (SDF-1alpha) and was abolished by incubation of the cells with both, N-glycanase and SDF-1alpha. This indicates that glycans are partly involved in CD4 association with CXCR4 and may partly explain the inhibitory effect of SDF-1alpha on HIV infection.  相似文献   

4.
A series of mouse monoclonal antibodies reacting with human T cells of the helper/inducer subclass, OKT4, 4A, 4B, 4C, and 4D, have been reported. Using double-fluorescent staining and complement-mediated depletion, it was shown that the antigen(s) recognized by OKT4, 4A, 4B, 4C, and 4D antibodies are present on the same cell. Using FITC-labeled OKT4, 4A, 4B, 4C and 4D, a lack of competition between the antibodies for their epitopes was shown. Immunoprecipitation of the antigen recognized by each antibody yielded a molecule of approximately 60,000-62,000 Da. Sequential precipitation with several antibodies resulted in a minimum of additional precipitated antigen following removal of the first antigen. Capping of cell surface antigen with OKT4, followed by staining with OKT4, 4A, 4B, 4C, or 4D, indicated that the epitopes for all five antibodies co-cap. A sandwich ELISA assay using OKT4 and the other antibodies showed that molecules binding to OKT4A, 4B, 4C, and 4D also bound OKT4. It can therefore be concluded that monoclonal antibodies OKT4, 4A, 4B, 4C, and 4D recognize distinct epitopes present on a molecule of approximately 60-62,000 Da on human helper/inducer T cells.  相似文献   

5.
We previously identified pituitary tumor-derived fibroblast growth factor receptor 4 (ptd-FGFR4), an alternatively transcribed N-terminally truncated cytoplasmic receptor isoform. Unlike wild-type FGFR4, ptd-FGFR4 facilitates cell transformation and results in pituitary tumor formation in transgenic mice. To investigate differences in the tumorigenic properties of FGFR4 and ptd-FGFR4, we examined their abilities to modulate cell adhesiveness. Introduction of ptd-FGFR4 into GH4 pituitary cells or NIH 3T3 fibroblasts resulted in significant reduction in cell adhesion to a collagen IV matrix compared with FGFR4- or empty vector-transfected cells. This adhesive difference was evident in the absence or presence of FGF stimulation. Furthermore, treatment with beta1-integrin neutralizing antibody markedly reduced adhesiveness in FGFR4-transfected cells but had little effect on the depressed adhesiveness of ptd-FGFR4-transfected cells. Unlike wild-type FGFR4, ptd-FGFR4 does not associate with neural cell-adhesion molecule (NCAM). Cells expressing FGFR4 demonstrate membranous N-cadherin with a noninvasive growth pattern identical to control GH4 cells when injected into immunodeficient mice. In contrast, ptd-FGFR4-expressing cells develop invasive tumors in vivo with marked loss of N-cadherin that localizes to the cytoplasm. Consistent with these changes, beta-catenin expression was diminished and its interaction with N-cadherin was disrupted in the presence of ptd-FGFR4, but both were intact in the presence of wild-type FGFR4. These data highlight the importance of membrane-anchored FGFR4 in assembling a multiprotein FGFR4 complex with NCAM and N-cadherin playing pivotal functions in maintaining normal cell adhesion. Disruption of distinct NCAM/N-cadherin proadhesive complexes by a tumor-derived FGFR4 isoform provides a novel mechanism beyond ligand independence that explains the pathobiology of proliferative and infiltrative but nonmetastatic neoplasms.  相似文献   

6.
We have examined the requirements for the export of leukotriene C4 (LTC4) from cultured human eosinophils. To define saturability and kinetics of LTC4 export, eosinophils were interacted with leukotriene A4 (LTA4) at 37 degrees C, and the methanolic extracts of the cell-associated and extracellular compartments were then analyzed for LTC4 content by reverse phase high performance liquid chromatography with on-line monitoring of absorbance at 280 nm. When LTA4 was added at concentrations from 0 to 100 microM for 10 min at 37 degrees C, the amount of LTC4 released extracellularly became constant at an LTA4 concentration of 7.5 microM or greater even though the amount of intracellular LTC4 continued to increase. When eosinophils were incubated with 50 microM LTA4 for 0-60 min at 37 degrees C and then held at 0 degrees C for the remainder of the 60-min interval, 54.2 and 77.3% (n = 3), respectively, of the total LTC4 was released extracellularly after 15 and 30 min of incubation at 37 degrees C. Eosinophils incubated with 50 microM LTA4 at 0 degrees C for 1 h synthesized 290 pmol of LTC4 (n = 3) which was approximately half-maximal, all of which was retained intracellularly. We utilized the time and temperature dependence of LTC4 export to preload eosinophils with both LTC4 and leukotriene C5 (LTC5) by sequentially supplying them with specific substrates. With increasing concentrations of intracellular LTC5, there was dose-dependent inhibition of the subsequent release of LTC4 at 37 degrees C, with the sum of the released glutathionyl leukotrienes remaining constant. In addition, only minimal competition for LTC4 release occurred when cells were preloaded with both LTC4 and the conjugate of 1-chloro-2,4-dinitrobenzene and reduced glutathione, S-(dinitrophenyl)glutathione. The criteria of saturability, time dependence of LTC4 release at 37 degrees C, competition of LTC4 with LTC5 for release, and the inhibition of LTC4 release at 0 degrees C establish the export of LTC4 from cells as a novel and specific biochemical step distinct from both LTA4 uptake and the conjugation of LTA4 with reduced glutathione by LTC4 synthase to form LTC4.  相似文献   

7.
8.
The bronchoconstrictive leukotrienes (LTs) LTC4, LTD4 and LTE4 (cysteinyl-LTs) and the chemoattractant LTB4 were formed in chopped human lung stimulated by the calcium ionophore A23187, or supplied with the precursor LTA4. In contrast, challenge with anti-IgE exclusively induced release of cysteinyl-LTs, indicating that LTB4 is not released as a primary consequence of IgE-mediated reactions in the human lung. Furthermore, several differences were observed with respect to formation and further conversion of LTB4 and LTC4 in the chopped lung preparation. Thus, exogenous [1-14C]arachidonic acid was dose-dependently converted to radioactive LTB4, whereas the cysteinyl-LTs released were not radiolabeled and the amounts of LTC4, D4 and E4 were not influenced by addition of increasing concentrations of arachidonic acid. LTC4 was rapidly and completely converted into LTD4 and LTE4, with no further catabolism of LTE4 within 90 min. The metabolism of LTB4 was much slower than that of LTC4. Thus, following a 60 min incubation approx. 25% of the material remained as LTB4, whereas 35% was omega-oxidized and 40% eluted on RP-HPLC as two unidentified peaks.  相似文献   

9.
Human eukaryotic translation initiation factor 4E (eIF4E) binds to the mRNA cap structure and interacts with eIF4G, which serves as a scaffold protein for the assembly of eIF4E and eIF4A to form the eIF4F complex. eIF4E is an important modulator of cell growth and proliferation. It is the least abundant component of the translation initiation machinery and its activity is modulated by phosphorylation and interaction with eIF4E-binding proteins (4E-BPs). One strong candidate for the eIF4E kinase is the recently cloned MAPK-activated protein kinase, Mnk1, which phosphorylates eIF4E on its physiological site Ser209 in vitro. Here we report that Mnk1 is associated with the eIF4F complex via its interaction with the C-terminal region of eIF4G. Moreover, the phosphorylation of an eIF4E mutant lacking eIF4G-binding capability is severely impaired in cells. We propose a model whereby, in addition to its role in eIF4F assembly, eIF4G provides a docking site for Mnk1 to phosphorylate eIF4E. We also show that Mnk1 interacts with the C-terminal region of the translational inhibitor p97, an eIF4G-related protein that does not bind eIF4E, raising the possibility that p97 can block phosphorylation of eIF4E by sequestering Mnk1.  相似文献   

10.
The isolation and characterization of the human helper inducer T cell subset   总被引:91,自引:0,他引:91  
Monoclonal antibody anti-4B4 was produced by fusing NS1 myeloma with spleen cells of a mouse immunized with Saguinus oedipus lymphocyte. This anti-4B4 antibody defines a 135-KD cell surface protein that is widely distributed throughout the hematopoietic system. More importantly, anti-4B4 is reactive with functionally unique human T cell subsets. Anti-4B4 antibody was reactive with approximately 41% of unfractionated T cells, 41% of T4+ inducer cells, and approximately 43% of T8+ cytotoxic/suppressor population. This antibody subdivided peripheral blood T4+ cells into two functionally distinct populations. The T4+4B4+ subset proliferates relatively poorly upon stimulation with Con A and autologous cell antigens (AMLR) but well on exposure to soluble antigens, and it provides a good helper signal for PWM-induced Ig synthesis. The T4+4B4- subset, in contrast, proliferates well to Con A stimulation and autologous cell antigen (AMLR) but relatively poorly to soluble antigen stimulation, and provides little help to B cells for PWM-induced Ig synthesis. The T4+4B4- subset is largely 2H4+ and functions as the inducer of the T8+ suppressor cells. Thus, the present results suggest that one can divide the human T4 population into two major subsets that are phenotypically and functionally distinct, the human helper inducer subset (T4+4B4+/H.I.) and its reciprocal population defined by anti-2H4, the suppressor inducer subset (T4+2H4+/S.I.).  相似文献   

11.
12.
A series of possible metabolites--4-nitrosobiphenyl ether (4-NO), 4-hydroxylaminobiphenyl ether (4-NHOH), 4-aminobiphenyl ether (4-NH2), 4-hydroxyacetylaminobiphenyl ether (4-N(OH)Ac), 4-acetoxyacetylaminobiphenyl ether (4-N(OAc)Ac)involved in the toxic effects of 4-nitrobiphenyl ether (4-NO2) was synthesized and tested for mutagenic activity toward Salmonella typhimurium TA100 strain in the presence and the absence of liver homogenates of guinea pig treated with Kaneclor-500. 4-NO2, 4-NO and 4-NHOH showed direct-acting mutagenicity. 4-NO and 4-NHOH showed high mutagenic activity, while the mutagenic activity of 4-NO2 was very weak compared to 4-NO and 4-NHOH. 4-NO showed antimicrobial action at high concentrations. The other three compounds tested induced no mutation. Upon addition of NAD(P)H, the mutagenic activities of 4-NO and 4-NHOH were slightly enhanced, but no enhancement was observed by addition of NAD(P)+. Metabolic activation with guinea pig liver homogenates enhanced the mutagenic activities of 4-NO2 and 4-NO, and converted 4-NH2, 4-N(OH)Ac and 4-N(OAc)Ac to the product(s) responsible for the mutagenic activity. Addition of bis(p-nitrophenyl)phosphate, a deacetylase inhibitor, inhibited the mutagenic activities of 4-N(OH)Ac and 4-N(OAc)Ac by about 70% in the presence of NADPH and about 77% in the absence of NADPH. High performance liquid chromatography (HPLC) analysis of non-enzymatic conversion-products of 4-NHOH and 4-BO with and without NADPH indicated that 4-NHOH disappeared after 30 min of incubation and was converted completely to 4-NO without NADPH, while with NADPH, 4-NHOH disappeared very slowly and was detected even after 4 h of incubation. In the case of 4-NO, no decrease of 4-NO was observed without NADPH, while with NADPH 4-NO decreased quickly and a significant amount of 4-NHOH appeared. The mechanism of the NAD(P)H-dependent increase in mutagenicity is also discussed.  相似文献   

13.
Phylogenetic and functional analyses of the cytochrome P450 family 4   总被引:1,自引:0,他引:1  
Cytochrome P450 family 4 (CYP4) proteins metabolize fatty acids, eicosanoids, and vitamin D and are important for chemical defense. The purpose of this study was to determine the evolutionary relationships between vertebrate CYP4 subfamilies and raise functional hypotheses regarding CYP4 subfamilies with little empirical data. 132 CYP4 sequences from 28 species were utilized for phylogenetic reconstructions by maximum likelihood and Bayesian inference. Monophyly was not found with the CYP4T and CYP4B subfamilies. CYP4V clustered with invertebrate subfamilies. Evolutionary rates of functional divergence were high in pairwise comparison with CYP4X yet, comparisons with mammalian CYP4F22 genes generally had no statistically significant divergence. Radical biochemical changes were detected in regions associated with substrate binding and the active site in comparisons among the CYP4A, CYP4X, and CYP4B subfamilies. Lastly, gene expression patterns, determined in silico with EST libraries from human, chicken, frog and fish, for CYP4V was markedly different between human and actinopterygian species. Further consideration should be given to the nomenclature of the CYP4T and CYP4B subfamily genes. Strong support was seen for the placement of CYP4A as a basal subfamily to CYP4X and CYP4Z. The B, B', J', K', K″ helices and a region at the end of C-terminus were suggested as conserved regions in CYP4 genes. The function of CYP4X was hypothesized to specialize in metabolism of long chain fatty acids. CYP4F22 genes may share a similar function to other CYP4F genes, although gene expression sites were different.  相似文献   

14.
15.
16.
The data on the pharmacology of leukotrienes showed that LTA4, LTC4 and LTD4 were equipotent on the guinea-pig lung parenchyma whereas LTB4 was slightly less active. However, on the trachea, the myotropic activity of LTC4 and LTD4 was equivalent and higher than LTB4 and LTA4. The potency of these compounds was also different on the ileum where LTD4 was more active than LTC4; at the concentration used, LTA4 and LTB4 were inactive on this tissue. These results suggested that the transformation of leukotrienes by the smooth muscle preparations was a prerequisite for its biological activity. To verify this hypothesis, LTA4 (100 ng) was incubated for 10 min. with 20,000 g supernatants of homogenates of guinea-pig lung parenchyma, trachea and ileum; the metabolites were analysed by bioassay using strips of guinea-pig ileum and lung parenchyma in a cascade superfusion system and by RP-HPLC. Homogenates of lung parenchyma rapidly transformed LTA4 to LTB4, LTC4, LTD4 and LTE4, which is in agreement with the myotropic potency of these leukotrienes on the lung parenchymal strip. Conversely, incubation of LTA4 with homogenates of guinea-pig ileum showed the formation of LTB4 and its isomers which are inactive on this preparation. Similarly, incubation of homogenates of trachea with LTA4 led to the formation of LTB4; this finding is again in agreement with the potency of these two leukotrienes on the trachea. Our results suggest that the myotropic activity and potency of LTA4 is related to the tissue levels of enzymes which catalyse its transformation.  相似文献   

17.
Facioscapulohumeral muscular dystrophy (FSHD) is associated with contractions of the D4Z4 repeat in the subtelomere of chromosome 4q. Two allelic variants of chromosome 4q (4qA and 4qB) exist in the region distal to D4Z4. Although both variants are almost equally frequent in the population, FSHD is associated exclusively with the 4qA allele. We identified three families with FSHD in which each proband carries two FSHD-sized alleles and is heterozygous for the 4qA/4qB polymorphism. Segregation analysis demonstrated that FSHD-sized 4qB alleles are not associated with disease, since these were present in unaffected family members. Thus, in addition to a contraction of D4Z4, additional cis-acting elements on 4qA may be required for the development of FSHD. Alternatively, 4qB subtelomeres may contain elements that prevent FSHD pathogenesis.  相似文献   

18.
N4-Acetyl-1-(2, 3-di-O-acetyl-4-thio-beta-D-arabinofuranosyl) cytosine (2) was synthesized in three steps from 1-(4-thio-beta-D-arabinofuranosyl) cytosine (1). The reaction of this partially blocked 4'-thio-ara-C derivative 2 with 2-chloro-4H-1,3,2-benzodioxaphosphorin-4-one gave the 5-phosphitylate derivative 3, which on reaction with pyrophosphate gave the 5'-nucleosidylcyclotriphosphite 4. Product 4 was then oxidized with iodine/pyridine/water and deblocked with concentrated ammonium hydroxide to provide the desired 4'-thio-ara-C-5'-triphosphate 5. This triphosphate 5 was converted to 4'-thio-ara-C -5'-monophosphate 6 by treatment with snake venom phosphodiesterase I. The details of the synthesis, purification, and characterization of both nucleotides are described.  相似文献   

19.
Potyvirus genome linked protein, VPg, interacts with translation initiation factors eIF4E and eIFiso4E, but its role in protein synthesis has not been elucidated. We show that addition of VPg to wheat germ extract leads to enhancement of uncapped viral mRNA translation and inhibition of capped viral mRNA translation. This provides a significant competitive advantage to the uncapped viral mRNA. To understand the molecular basis of these effects, we have characterized the interaction of VPg with eIF4F, eIFiso4F, and a structured RNA derived from tobacco etch virus (TEV RNA). When VPg formed a complex with eIF4F, the affinity for TEV RNA increased more than 4-fold compared with eIF4F alone (19.4 and 79.0 nm, respectively). The binding affinity of eIF4F to TEV RNA correlates with translation efficiency. VPg enhanced eIFiso4F binding to TEV RNA 1.6-fold (178 nm compared with 108 nm). Kinetic studies of eIF4F and eIFiso4F with VPg show approximately 2.6-fold faster association for eIFiso4F.VPg as compared with eIF4F.VPg. The dissociation rate was approximately 2.9-fold slower for eIFiso4F than eIF4F with VPg. These data demonstrate that eIFiso4F can kinetically compete with eIF4F for VPg binding. The quantitative data presented here suggest a model where eIF4F.VPg interaction enhances cap-independent translation by increasing the affinity of eIF4F for TEV RNA. This is the first evidence of direct participation of VPg in translation initiation.  相似文献   

20.
Among the genes and proteins of the human immune system, complement component C4 is extraordinary in its frequent germline variation in the size and number of genes. Definitive genotypic and phenotypic analyses were performed on a central European population to determine the C4 polygenic and gene size variations and their relationships with serum C4A and C4B protein concentrations and hemolytic activities. In a study population of 128 healthy subjects, the number of C4 genes present in a diploid genome varied between two to five, and 77.4% of the C4 genes belonged to the long form that contains the endogenous retrovirus HERV-K(C4). Intriguingly, higher C4 serum protein levels and higher C4 hemolytic activities were often detected in subjects with short C4 genes than those with long genes only, suggesting a negative epistatic effect of HERV-K(C4) on the expression of C4 proteins. Also, the body mass index appeared to affect the C4 serum levels, particularly in the individuals with medium or high C4 gene dosages, a phenomenon that was dissimilar in several aspects from the established correlation between body mass index and serum C3. As expected, there were strong, positive correlations between total C4 gene dosage and serum C4 protein concentrations, and between serum C4 protein concentrations and C4 hemolytic activities. There were also good correlations between the number of long genes with serum levels of C4A, and the number of short genes with serum levels of C4B. Thus, the polygenic and gene size variations of C4A and C4B contribute to the quantitative traits of C4 with a wide range of serum protein levels and hemolytic activities, and consequently the power of the innate defense system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号