首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The male reproductive tract and accessory glands comprise a complex but interrelated system of tissues that are composed of many distinct cell types, all of which contribute to the ability of spermatozoa to carry out their ultimate function of fertilizing an oocyte. Spermatozoa undergo their final steps of maturation as they pass through the male excurrent duct, which includes efferent ducts, the epididymis and the vas deferens. The composition of the luminal environment in these organs is tightly regulated. Major fluid reabsorption occurs in efferent ducts and in the epididymis, and leads to a significant increase in sperm concentration. In the distal epididymis and vas deferens, fluid secretion controls the final fluidity of the luminal content. Therefore, the process of water movement in the excurrent duct is a crucial step for the establishment of male fertility. Aquaporins contribute to transepithelial water transport in many tissues, including the kidney, the brain, the eye and the respiratory tract. The present article reviews our current knowledge regarding the distribution and function of aquaporins in the male excurrent duct.  相似文献   

2.
The male reproductive tract and accessory glands comprise a complex but interrelated system of tissues that are composed of many distinct cell types, all of which contribute to the ability of spermatozoa to carry out their ultimate function of fertilizing an oocyte. Spermatozoa undergo their final steps of maturation as they pass through the male excurrent duct, which includes efferent ducts, the epididymis and the vas deferens. The composition of the luminal environment in these organs is tightly regulated. Major fluid reabsorption occurs in efferent ducts and in the epididymis, and leads to a significant increase in sperm concentration. In the distal epididymis and vas deferens, fluid secretion controls the final fluidity of the luminal content. Therefore, the process of water movement in the excurrent duct is a crucial step for the establishment of male fertility. Aquaporins contribute to transepithelial water transport in many tissues, including the kidney, the brain, the eye and the respiratory tract. The present article reviews our current knowledge regarding the distribution and function of aquaporins in the male excurrent duct.  相似文献   

3.
Cubilin is a peripheral membrane protein that cooperates with the endocytic receptor megalin to mediate endocytosis of ligands in various polarized epithelia. Megalin is expressed in the male reproductive tract where it has been implicated in the process of sperm membrane remodeling. A potential role for cubilin in the male reproductive tract has not been explored. Using RT-PCR, we found that cubilin and megalin mRNAs are expressed in the efferent ducts, corpus and cauda epididymis, and proximal and distal vas deferens. Immunohistological analysis revealed that cubilin was expressed in nonciliated cells of the efferent ducts, principal cells of the corpus and cauda epididymis and vas deferens. Immunogold EM showed cubilin in endocytic pits, endocytic vesicles, and endosomes of these cells. The expression profile of cubilin in the male reproductive tract was coincident with that of megalin except in principal cells of the caput epididymis. Double immunogold labeling showed that cubilin and megalin co-localized within the endocytic apparatus and recycling vesicles of efferent duct cells. Neither protein was found in lysosomes. Injection of RAP, an antagonist of megalin interaction with cubilin, reduced the level of intracellular cubilin in cells of the efferent ducts and vas deferens. In conclusion, cubilin and megalin are co-expressed in cells of the epididymis and vas deferens and the endocytosis of cubilin in these tissues is dependent on megalin. Together, these findings highlight the potential for a joint endocytic role for cubilin and megalin in the male reproductive tract.  相似文献   

4.
The transepithelial movement of water into the male reproductive tract is an essential process for normal male fertility. Protein water channels, referred to as aquaporins (AQPs), are involved in increasing the osmotic permeability of membranes. This study has examined the expression of AQP1, AQP2, and AQP7 in epithelial cells in adult dog efferent ducts, epididymis, and vas deferens. Samples of dog male reproductive tract comprising fragments of the testis, initial segment, caput, corpus and cauda epididymidis, and vas deferens were investigated by immunohistochemistry and Western blotting procedures to show the localization and distribution of the AQPs. AQP1 was noted in rete testis, in efferent ducts, and in vessels in the intertubular space, suggesting that AQP1 participated in the absorption of the large amount of testicular fluid occurring characteristically in the efferent ducts. AQP2 expression was found in the rete testis, efferent ducts and epididymis, whereas AQP7 was expressed in the epithelium of the proximal regions of the epididymis and in the vas deferens. This is the first time that AQP2 and AQP7 have been observed in these regions of mammalian excurrent ducts, but their functional role in the dog male reproductive tract remains unknown. Investigations of AQP biology could be relevant for clinical studies of the male reproductive tract and to technologies for assisted procreation. R.F.D. gratefully acknowledges a Fellowship from the Department of Anatomy, Institute of Biosciences, UNESP, Botucatu, SP, Brazil. This work was also funded by FAPESP (Sao Paulo State Research Foundation; grant 04/05578–1 to A.M.O. and grant 04/05579–8 to R.F.D.). This paper is part of the PhD Thesis presented by R.F.D. to the State University of Campinas – UNICAMP, Brazil.  相似文献   

5.
Aquaporin 9 expression along the male reproductive tract   总被引:10,自引:0,他引:10  
Fluid movement across epithelia lining portions of the male reproductive tract is important for modulating the luminal environment in which sperm mature and reside, and for increasing sperm concentration. Some regions of the male reproductive tract express aquaporin (AQP) 1 and/or AQP2, but these transmembrane water channels are not detectable in the epididymis. Therefore, we used a specific antibody to map the cellular distribution of another AQP, AQP9 (which is permeable to water and to some solutes), in the male reproductive tract. AQP9 is enriched on the apical (but not basolateral) membrane of nonciliated cells in the efferent duct and principal cells of the epididymis (rat and human) and vas deferens, where it could play a role in fluid reabsorption. Western blotting revealed a strong 30-kDa band in brush-border membrane vesicles isolated from the epididymis. AQP9 is also expressed in epithelial cells of the prostate and coagulating gland where fluid transport across the epithelium is important for secretory activity. However, it was undetectable in the seminal vesicle, suggesting that an alternative fluid transport pathway may be present in this tissue. Intracellular vesicles in epithelial cells along the reproductive tract were generally poorly stained for AQP9. Furthermore, the apical membrane distribution of AQP9 was unaffected by microtubule disruption. These data suggest that AQP9 is a constitutively inserted apical membrane protein and that its cell-surface expression is not acutely regulated by vesicular trafficking. AQP9 was detectable in the epididymis and vas deferens of 1-wk postnatal rats, but its expression was comparable with adult rats only after 3--4 wk. AQP9 could provide a route via which apical fluid and solute transport occurs in several regions of the male reproductive tract. The heterogeneous and segment-specific expression of AQP9 and other aquaporins along the male reproductive tract shown in this and in our previous studies suggests that fluid reabsorption and secretion in these tissues could be locally modulated by physiological regulation of AQP expression and/or function.  相似文献   

6.
The Notch signaling pathway is involved in a variety of developmental processes. Here, we characterize the phenotypes developing in the reproductive organs of male transgenic (Tg) mice constitutively expressing the activated mouse Notch1 intracellular domain (Notch1(intra)) under the regulatory control of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR). Tg expression was detected in testis, vas deferens and epididymis by Northern blot analysis. In situ hybridization with a Notch1-specific probe lacked sensitivity to detect expression in normal-appearing cells, but demonstrated expression in hyperplastic epithelial cells of the vas deferens, epididymis and efferent ducts. Tg males from three independent founder lines were sterile. Histological analysis of reproductive organs of young Tg males (postnatal ages 8 and 21) showed no difference compared to those of non-Tg males. In contrast, in adult Tg mice from day 38 onwards, the efferent ducts, the vas deferens and most epididymal segments revealed bilateral epithelial cell hyperplasia with absence of fully differentiated epithelial cells. Electron microscopy confirmed the uniformly undifferentiated state of these cells. Immunohistochemistry with anti-PCNA antibody also revealed enhanced proliferation of Tg epididymis. In adult Tg testis, the different generations of germ cells of seminiferous tubules appeared normal, although some tubules were highly dilated and revealed an absence of early and/or late spermatids. The epithelial cells of the Tg tubuli recti and rete testis were not abnormal, but the rete testis was highly dilated and contained numerous spermatozoa, suggesting a downstream blockage. Consistent with a blockage of efferent ducts often seen at the rete testis/efferent duct interface, spermatozoa were absent in epididymis of all adult Tg mice and in all highly hyperplastic efferent duct tubules of these Tg mice. Such a blockage was visualized by injection of Evans blue dye into the rete testis lumen. Finally, the presence of ectopic hyperplastic efferent duct tubules was observed within the testicular parenchyma itself, outside their normal territory, suggesting that Notch1 signaling is involved in the establishment of these borders. This phenotype seems to represent a novel developmental defect in mammals. Together, these results show that constitutive Notch1 signaling significantly affects the development of male reproductive organs.  相似文献   

7.
Reproductive tract abnormalities and male infertility have higher incidence in ADPKD patients than in general populations. In this work, we reveal that Pkd1, whose mutations account for 85% of ADPKD cases, is essential for male reproductive tract development. Disruption of Pkd1 caused multiple organ defects in the murine male reproductive tract. The earliest visible defect in the Pkd1?/? reproductive tract was cystic dilation of the efferent ducts, which are derivatives of the mesonephric tubules. Epididymis development was delayed or arrested in the Pkd1?/? mice. No sign of epithelial coiling was seen in the null mutants. Disruption of Pkd1 in epithelium alone using the Pax2-cre mice was sufficient to cause efferent duct dilation and coiling defect in the epididymis, suggesting that Pkd1 is critical for epithelium development and maintenance in male reproductive tract. In-depth analysis showed that Pkd1 is required to maintain tubulin cytoskeleton and important for Tgf-β/Bmp signal transduction in epithelium of male reproductive tract. Altogether, our results for the first time provide direct evidence for developmental roles of Pkd1 in the male reproductive tract and provide new insights in reproductive tract abnormalities and infertility in ADPKD patients.  相似文献   

8.
9.
Spermatozoa maturation and capacitation occurring in the male and female reproductive tracts, respectively, involves the remodeling of the spermatozoa plasma membrane. Apolipoprotein J (apoJ) and apolipoprotein A-I (apoA-I) have been implicated in the process of lipid exchange from the spermatozoa plasma membrane to epithelial cells lining the male reproductive tract. Evidence suggests that this process is mediated by the cooperative action of the endocytic lipoprotein receptors megalin and cubilin, which are expressed at the apical surface of absorptive epithelia in various tissues, including the efferent ducts and epididymis. Here, we investigated the possibility that these receptors and their lipid-binding ligands, apoJ and apoA-I, might function similarly in the female reproductive tract. We show that megalin and cubilin are expressed in the uterine epithelium at all stages of the estrous cycle, maximally during estrous and metestrous stages. In the oviduct, there is pronounced expression of both megalin and cubilin in the nonciliated cells of the proximal oviduct and epithelial cells of the distal oviduct, particularly during estrous and metestrous stages. In both uterine and oviduct epithelial cells, megalin and cubilin were located on the apical regions of the cells, consistent with a distribution at the cell surface and in endosomes. ApoJ and apoA-I were both detected in apical regions of uterine and oviduct epithelial cells. Secretory cells of the uterine glands were found to express apoJ and apoA-I suggesting that the glands are a site of synthesis for both proteins. In summary, our findings indicate that megalin and cubilin function within the female reproductive tract, possibly mediating uterine and oviduct epithelial cell endocytosis of apoJ/apoA-I-lipid complexes and thus playing a role in lipid efflux from the sperm plasma membrane, a major initiator of capacitation.  相似文献   

10.
Cysteine sulfinate decarboxylase (CSD) is the rate-limiting biosynthetic enzyme of taurine, but it is still controversial whether the male reproductive organs have the function to synthesize taurine through CSD pathway. The present study was thus undertaken to detect CSD expression in male mouse reproductive organs by RT-PCR, Western blot and immunohistochemistry. The results show that CSD is expressed both at the mRNA and protein levels in the testis, epididymis and ductus deferens. The relative levels of both CSD mRNA and protein increase from the testis to the epididymis and to the ductus deferens. Immunohistochemical results demonstrate that the main cell types containing CSD are Leydig cells of testis, epithelial cells and some stromal cells throughout the efferent ducts, epididymis and ductus deferens. These results suggest that male genital organs have the function to produce taurine through the CSD pathway, although quantifying the relation of CSD expression to taurine synthesis and the exact functions of taurine in male genital organs still need to be elucidated in future studies.  相似文献   

11.
Androgen-binding protein (ABP) is one of the best-characterized products of synthesis by the Sertoli cells in the rat. Although the exact physiological role of ABP remains to be determined, it has been widely used to study Sertoli cells and testicular function in this species. Since this protein is the principal carrier for testosterone in rat testis and epididymis, we decided to investigate ABP immunoreactivity (ABP-I) in androgen-dependent organs, including testicle, epididymides, prostate, and seminal vesicles. The location of ABP was investigated by immunohistochemistry using specific antisera against rat ABP. As previously described in the testis, rat ABP-I was identified in the seminiferous tubules within the cytoplasm of the Sertoli cells and the tubular luminae. The epididymis showed ABP-I only in epithelial cells of the proximal caput. We demonstrated ABP-I in the apical portions of epithelial cells of the rat prostate. Short-term castration and/or ligation of the efferent ducts did not suppress prostatic ABP-I. ABP-I was not present in seminal vesicles of control rats nor under any of the experimental conditions used throughout this study. The results also indicate the presence of ABP-I in prostatic epithelium, probably because of a mechanism similar to that described in epididymis. Our data support and enhance the concept that ABP may serve as a transmembrane carrier protein for androgens in androgen target organs in the male reproductive tract.  相似文献   

12.
13.
This study investigated the morphology and immunoexpression of aquaporins (AQPs) 1 and 9 in the rete testis, efferent ducts, epididymis, and vas deferens in the Azara’s agouti (Dasyprocta azarae). For this purpose, ten adult sexually mature animals were used in histologic and immunohistochemical analyses. The Azara’s agouti rete testis was labyrinthine and lined with simple cubic epithelium. Ciliated and non-ciliated cells were observed in the epithelium of the efferent ducts. The epididymal cellular population was composed of principal, basal, apical, clear, narrow, and halo cells. The epithelium lining of vas deferens was composed of the principal and basal cells. AQPs 1 and 9 were not expressed in the rete testis. Positive reaction to AQP1 was observed at the luminal border of non-ciliated cells of the efferent ducts, and in the peritubular stroma and blood vessels in the epididymis, and vas deferens. AQP9 was immunolocalized in the epithelial cells in the efferent ducts, epididymis and vas deferens. The morphology of Azara’s agouti testis excurrent ducts is similar to that reported for other rodents such as Cuniculus paca. The immunolocalization results of the AQPs suggest that the expression of AQPs is species-specific due to differences in localization and expression when compared to studies in other mammals species. The knowledge about the expression of AQPs in Azara’s agouti testis excurrent ducts is essential to support future reproductive studies on this animal, since previous studies show that AQPs may be biomarkers of male fertility and infertility.  相似文献   

14.
15.
16.
Testosterone and estrogen are no longer considered male only and female only hormones. Both hormones are important in both sexes. It was known as early as the 1930's that developmental exposure to a high dose of estrogen causes malformation of the male reproductive tract, but the early formative years of reproductive biology as a discipline did not recognize the importance of estrogen in regulating the normal function of the adult male reproductive tract. In the adult testis, estrogen is synthesized by Leydig cells and the germ cells, producing a relatively high concentration in rete testis fluid. Estrogen receptors are present in the testis, efferent ductules and epididymis of most species. However, estrogen receptor-α is reported absent in the testis of a few species, including man. Estrogen receptors are abundant in the efferent ductule epithelium, where their primary function is to regulate the expression of proteins involved in fluid reabsorption. Disruption of the α-receptor, either in the knockout (αERKO) or by treatment with a pure antiestrogen, results in dilution of cauda epididymal sperm, disruption of sperm morphology, inhibition of sodium transport and subsequent water reabsorption, increased secretion of Cl-, and eventual decreased fertility. In addition to this primary regulation of luminal fluid and ion transport, estrogen is also responsible for maintaining a differentiated epithelial morphology. Thus, we conclude that estrogen or its α-receptor is an absolute necessity for fertility in the male.  相似文献   

17.
The anterior testicular ducts of squamates transport sperm from the seminiferous tubules to the ductus deferens. These ducts consist of the rete testis, ductuli efferentes, and ductus epididymis. Many histological and a few ultrastructural studies of the squamate reproductive tract exist, but none concern the Hydrophiidae, the sea snakes and sea kraits. In this study, we describe the anterior testicular ducts of six species of hydrophiid snakes as well as representatives from the Elapidae, Homolapsidae, Leptotyphlopidae, and Uropeltidae. In addition, we examine the ultrastructure of these ducts in the yellow‐bellied Sea Snake, Pelamis platurus, only the third such study on snakes. The anterior testicular ducts are similar in histology in all species examined. The rete testis is simple squamous or cuboidal epithelium and transports sperm from the seminiferous tubules to the ductuli efferentes in the extratesticular epididymal sheath. The ductuli efferentes are branched, convoluted tubules composed of simple cuboidal, ciliated epithelium, and many species possess periodic acid‐Schiff+ granules in the cytoplasm. The ductus epididymis at the light microscopy level appears composed of pseudostratified columnar epithelium. At the ultrastructural level, the rete testis and ductuli efferentes of P. platurus possess numerous small coated vesicles and lack secretory vacuoles. Apocrine blebs in the ductuli efferentes, however, indicate secretory activity, possibly by a constitutive pathway. Ultrastructure reveals three types of cells in the ductus epididymis of P. platurus: columnar principal cells, squamous basal cells, and mitochondria‐rich apical cells. This is the first report of apical cells in a snake. In addition, occasional principal cells possess a single cilium, which has not been reported in reptiles previously but is known in some birds. Finally, the ductus epididymis of P. platurus differs from other snakes that have been studied in possession of apical, biphasic secretory vacuoles. All of the proximal ducts are characterized by widening of adjacent plasma membranes into wide intercellular spaces, especially between the principal cells of the ductus epididymis. Our results contribute to a larger, collaborative study of the evolution of the squamate reproductive tract and to the potential for utilizing cellular characters in future phylogenetic inferences. J. Morphol. 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

18.
Osteopontin (OPN), a multifunctional phosphoprotein found in both hard and soft tissues, was examined in the male reproductive tract. The expression and regulation of OPN in the rat testis, efferent ducts, and epididymis was examined during postnatal development through to adulthood using immunocytochemistry at the light- and electron-microscopic level. Immunoblot analysis revealed a major 30-kDa band for epididymal tissue and a major 60-kDa band for the testis. In the testis, immunostaining of OPN was noted in early germ cells from spermatogonia to early pachytene spermatocytes, suggesting a role for OPN as an adhesive protein binding these cells to the basement membrane and adjacent Sertoli cells. Nonciliated cells of the efferent ducts expressed OPN, whereas a cell- and region-specific distribution of OPN was observed in the epididymis. Reactivity of OPN in the apical region of the cell corresponded to labeling of microvilli, small endocytic vesicles, and endosomes, where OPN may serve to remove calcium from the epididymal lumen and, thus, prevent mineral accumulation and subsequent decrease in sperm fertility. Regulation and postnatal studies revealed that circulating androgens regulate OPN expression in principal cells of the epididymis only. Taken together, the data reveal cell- and region-specific expression and regulation of OPN in the epididymis.  相似文献   

19.
The male reproductive glands of the red-bellied tree squirrel, Callosciurus erythraeus, in the infantile, and prepubertal males, as well as sexually functional, degenerating and redeveloping adults were studied histologically. In the infant, testes are characterized with solid seminiferous tubules filled with primordial germ cells and Sertoli cells. Interstitial cells are sparse. The prostate is composed of condensed cell cords grouped into lobules dispersed with interlobular tissues rich in fibroblasts. In the epididymis the highly convoluted tubule is lined with a simple cuboidal or columnar epithelium and thin smooth musculature without. In the prepubertal male, germ cells are engaged actively in mitosis. Primary spermatocytes are readily recognized. Leydig cells appear in groups in the interstitial tissue. In the prostate, cell cords become highly branched and collecting tubules make their appearance. The tubules in the epididymis are enlarged in diameter but their peripheral musculature becomes thinner. In functional males, meiosis is active and bundles of spermatozoa are scattered along the central lumen. Leydig cells have their cytoplasm highly enriched. The prostate is in the secretory phase. The tubule in the epididymis is filled with sperm. In the degenerating adult, meiosis is interrupted and necrotic germ cells are detached from germinal epithelium. In the prostate, secretory and collecting ducts are eventually reduced to condensed lobules separated by interlobular fibrous tissue. The tubule in the epididymis often fills with necrotic germ cells but no sperm. In the redeveloping adult, the histology of the testes, prostate and epididymis is similar to that of the prepubertal male. However, there is more fibrous tissue in the interlobular septa in the prostate gland and thick musculature at the periphery of the tubule in the epididymis.  相似文献   

20.
The localization of sulfated glycoprotein-2 (clusterin; SGP-2) was investigated in the rete testis, efferent ducts, and epididymis of the rat using light (LM) and electron (EM) microscope immunocytochemistry. At the LM level, the epithelial cells of the rete testis and efferent ducts demonstrated an intense immunoperoxidase reaction over their apical and supranuclear regions, and sperm in the lumen of the efferent ducts were unreactive. In the EM, gold particles were found exclusively over the endocytic apparatus of these cells. In the proximal area of the epididymal initial segment, an insignificant immunostaining of epithelial cells and sperm was observed. However, the distal area of the initial segment showed a moderate staining over the epithelial principal cells and sperm, while in the intermediate zone of the epididymis a stronger reaction was observed over these cells. The strongest immunoperoxidase reaction was noted in the caput epididymidis, where it formed a distinct mottled pattern. Thus, while some principal cells were intensely stained, others were moderately or weakly stained; a few were completely unreactive. In the corpus and cauda epididymidis, the staining pattern was similar but not as intense. In the EM, only the secretory apparatus of these cells was found to be immunolabeled with gold particles. Sperm in the lumen of these different regions were also labeled. The epithelial clear cells were unreactive throughout the epididymis. Northern blot analysis substantiated these results and showed the presence of highest levels of SGP-2 mRNA in the caput epididymidis, especially in its proximal area, whereas increasingly lower levels were found in the corpus and cauda epididymidis. In summary, these results suggest that testicular SGP-2 dissociates from the sperm during passage through the rete testis and efferent ducts, where it is endocytosed by the epithelial cells lining these regions. In the epididymis, it is replaced by an epididymal SGP-2 that is secreted by the epithelial principal cells of the epididymis. Furthermore, in the epididymis, the principal cells appear to be in different functional states with respect to the secretion of epididymal SGP-2 within a given region of the duct as well as along the epididymal duct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号