首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was conducted to clarify the development of free neuromasts with growth of the barramundi, Lates calcarifer. A pair of free neuromasts was observed behind the unpigmented eyes in newly hatched eleutheroembryos with a mean total length of 1.93 mm, and two-hour-old eleuthero-embryos could respond to an approaching pipette. At 2 days after hatching, the egg yolk sac was mostly consumed, the eyes were pigmented, and the larvae commenced feeding on rotifers. Free neuromasts increased in number with growth and commenced developing into canal neuromasts in barramundi 15 days old with a mean total length of 8.07 mm. The average length of the major axis of the trunk free neuromasts attained approximately 12.9-15.5 microm, and the number of sensory cells was 15.4-17.5 at 15-20 days old. Developed cupulae of free neuromasts were observed in 1-day-old eleutheroembryos. The direction of maximum sensitivity of free neuromasts, determined from the polarity of the sensory cells, coincided with the minor axis of the lozenge-shaped outline of the apical surface of the free neuromasts. The polarity of trunk neuromasts was usually oriented along the antero-posterior axis of the fish body, but a few had a dorso-ventral direction. On the head, free neuromasts were oriented on lines tangential to concentric circles around the eye.  相似文献   

2.
African catfish Clarias gariepinus hatched with morphologically immature features; however, sensory organs developed rapidly with fish growth. Although the eyes of newly hatched larvae were immature without pigment, in 2 day‐old larvae, the retina of the eyes had already developed except for the rod cells. No free neuromasts were observed in newly hatched larvae. In 1 day‐old larvae, however, free neuromasts were observed on the head and trunk. Free neuromasts increased with larval growth. Newly hatched larvae had simple round‐shaped otic vesicles; however, all sensory epithelia of the inner ear were observed until the larvae were 3 days old. Two day‐old larvae swam horizontally, had sharp teeth, commenced ingesting rotifers and also artificial feed (small‐size pellets) under both light and dark conditions; by then the larvae already had many taste buds. Three day‐old larvae showed negative phototaxis and cannibalism by eating their conspecifics. Most of the free neuromasts observed in this study had the peculiar feature of many microvilli around the sensory cells on the apical surface. Detected free neuromasts as ordinary type lateral‐line organs were not observed in previous reports in teleosts. In 10 day‐old larvae, there were two lines of free neuromasts on the flank and lower edge of the trunk; presumptive canal neuromasts were oval shaped and had begun to sink under the skin. The direction of maximum sensitivity of the neuromasts was parallel with the longitudinal axis of their elliptical apical surface.  相似文献   

3.
To find how larval fish sense mechanical stimuli via their free neuromasts, we examined morphological changes in free neuromasts in the larval willow shiner, Gnathopogon elongatus caerulescens. Free neuromasts were found on the body surface of newly hatched larvae and their number increased on both the head and trunk with larval growth. The apical surface of free neuromasts changed in outline from a circle to a lozenge shape as the number of sensory cells increased in the prelarval stage, and then the cupulae of the free neuromasts changed from a stick-like to a blade-like shape. Seven-day-old larvae were at the postlarval stage and had many free neuromasts that were nearly mature. All free neuromasts contained sensory cells of opposing polarity. The orientation of the maximum sensitivity of free neuromasts, decided from the polarity of the sensory cells, coincided with the minor axis of the lozenge-shaped outline of the apical surface of the free neuromasts, and was in the same axis as the direction in which the blade-like cupulae bent. The change to a blade-like shape would cause a stimulus parallel to the minor axis to be perceived as being stronger than the same stimulus from other directions. The polarity of trunk neuromasts was usually oriented along the antero-posterior axis of the fish body, but a few had dorso-ventral orientation. On the head, free neuromasts were oriented on lines tangential to concentric circles around the eye.  相似文献   

4.
A study of the ontogeny of the lateral line system in leptocephali of the Japanese eel Anguilla japonica reveals the existence of three morphologically different types of lateral line organs. Type I is a novel sensory organ with hair cells bearing a single kinocilium, lacking stereocilia, distributed mainly on the head of larvae, and morphologically different from typical superficial neuromasts of the lateral line system. Its developmental sequence suggests that it may be a presumptive canal neuromast. Type II is an ordinary superficial neuromast, common in other teleost larvae, which includes presumptive canal neuromasts that first appear on the trunk and accessory superficial neuromasts that later appear on the head and trunk. Type III is a very unusual neuromast located just behind the orbit, close to the otic vesicle, with radially oriented hair cells, suggesting that these serve as multiple axes of sensitivity for mechanical stimuli. The behavior of larval eels suggests that the radially oriented neuromasts may act as the sole mechanosensory organ until the ordinary superficial neuromasts develop. The finding that larval eels possess a well-developed mechanosensory system suggests the possibility that they are also capable of perceiving weak environmental mechanical stimuli, like other teleost larvae.  相似文献   

5.
The present paper clarifies the initial development of the lateral line organs in the embryonic Japanese flounder, Paralichthys olivaceus. The first appearances of lateral line primordia, and the proliferation, distribution and morphological development of the free neuromasts, including nerve ending formation: establishment of hair cell innervations via the formation of synapses, were examined by light microscopy, scanning and transmission electron microscopy. The first pair of neuromast primordia appeared in the otic region ≈ 30 h prior to hatching and subsequently differentiated into free neuromasts, otic neuromasts, after ≈ 8 h. At hatching, a pair of free neuromasts and three pairs of neuromast primordia were present on the head, and three pairs of neuromast primordia were present on the trunk. The hair cell polarity of the otic neuromast until just prior to hatching was radial, but not bi‐directional. The typical afferent and efferent nerve endings in the otic neuromasts had formed by the time of hatching, suggesting that the otic neuromasts are functional prior to hatching. The three neuromast primordia located on each side of the trunk were derived from a long, narrow ectodermal cell cluster and erupted through the epidermis after hatching.  相似文献   

6.
Newly hatched larvae had one pair of free neuromasts behind the eyes. As the larvae grew, free neuromasts increased in number. The apical surface of sensory epithelium widened and subsequently elongated. The number of sensory hair cells increased and the directions of maximum sensitivity became both anteroposterior and dorsoventral on the trunk. Before notochord flexion, only the anteroposterior type was observed. After notochord flexion, two types of neuromasts were observed on the trunk. On the head, the orientation of free neuromasts formed a tangential line to concentric circles around the eyes and nostrils. Free neuromasts on the head could therefore receive stimuli from various angles from predators or zooplanktons. This suggests that these free neuromasts play a role in compensating for a dead angle of vision, and an important role in detecting zooplankton under scotopic vision. Canal organs were observed on the head and operculum in 40-d-old animals.  相似文献   

7.
The larval ontogeny of Hypseleotris galii is described and illustrated. 'Premature' yolk sac larvae hatch with unpigmented eyes and no mouth. 'Late' yolk sac larvae hatch with pigmented eyes and a functional mouth. Hatching glands are distributed on the head and ventral surface of the body. The yolk is absorbed and the larvae begin feeding 6 days after hatching. Larval development is completed 74 days after hatching. Hypseleotris galii larvae have six pairs of naked neuromasts: two pairs on the head and four pairs on the body. The significance of these results to developmental strategies in Hypseleotris species is discussed.  相似文献   

8.
Lamprey metamorphosis leads to considerable changes in morphology and behavior. We have recently reported that larval lampreys possess a functional lateral line system. Here we investigated metamorphic morphological changes in the lateral line system using light and electron microscopy. Functional modifications were studied by recording the trunk lateral line nerve activity of larvae and adults while stimulating neuromasts with approximately sinusoidal water motion. We found a general re-patterning of neuromasts on the head and trunk including an increase in numbers, redistribution within the pit lines, and shifts of the pit lines relative to external features. The trunk lateral line nerve response was qualitatively similar in adults and larvae. Both showed two neuronal populations responding to opposite directions of water flow. Magnitude of the response increased monotonically with stimulus amplitude. At low frequencies, the response lag relative to the stimulus maximum was approximately 220°, and the gain depended approximately linearly on frequency, confirming that superficial neuromasts are velocity detectors. Changes in phase lag with increasing stimulus frequency were steeper in larvae, suggesting slower afferent conductance. The response gain with frequency was smaller for adults, suggesting a narrower frequency discrimination range and decreased sensitivity. These changes may be adaptations for the active lifestyle of adult lampreys.  相似文献   

9.
A study of neuromast ontogeny and lateral line canal formation in Oreochromis aureus and Cichlasoma nigrofasciatum reveals the existence of two classes of neuromasts: those that arise just before hatching (presumptive canal neuromasts, dorsal superficial neuromasts, gap neuromasts, and caudal fin neuromasts) and pairs of neuromasts that arise on each lateral line scale lateral to each canal segment at the same time as canal formation. In the anterior trunk canal segment, each presumptive canal neuromast is accompanied by a dorsoventrally oriented superficial neuromast forming an orthogonal neuromast pair. It is suggested that each of these dorsoventrally oriented superficial neuromasts is homologous to the transverse superficial neuromast row described by Münz (Zoomorphology 93:73-86, '79) in other cichlids. It is further suggested that the longitudinal lines described by Münz (Zoomorphology 93:73-86, '79) are derived from the pair of superficial neuromasts that arise during canal formation. Distinct changes in neuromast topography are documented. Neuromast formation, scale formation, and lateral line canal formation are three distinct and sequential processes. The distribution of neuromasts is correlated with myomere configuration; there is always one presumptive canal neuromast on each myomere. A single scale forms beneath each presumptive canal neuromast. Canal segment formation is initiated with the enclosure of each presumptive canal neuromast by an epithelial bridge which later ossifies. The distinction of these three processes raises questions as to the causal relationships among them.  相似文献   

10.
西伯利亚鲟仔鱼侧线系统的发育   总被引:1,自引:0,他引:1  
Song W  Song JK 《动物学研究》2012,33(3):261-270
鲟鱼属软骨硬鳞鱼,在电感受器的进化中占据着极为重要的地位。该文以光镜和扫描电镜手段研究了西伯利亚鲟侧线系统早期发育,包括侧线基板发育及感觉嵴的形成、侧线感受器的发育和侧线管道的形成。1日龄,听囊前后外胚层增厚区域出现6对侧线基板;除后侧线基板细胞向躯干侧面迁移外,其他侧线基板均形成感觉嵴结构;每一侧线基板中均有神经丘原基形成。7日龄,壶腹器官在吻部腹面两侧出现,壶腹器官的发育比神经丘晚一周左右。9日龄,神经丘下的表皮略有凹陷,侧线管道开始形成。29日龄,在吻部腹面两侧可见少数个别的壶腹器官表皮细胞覆盖壶腹器官中央区域留下3~4个小的开口;壶腹管内可见大量的微绒毛存在,在其他鲟形目鱼类、软骨鱼类中也存在类似的结构。57日龄,躯干侧线管道已完全埋于侧骨板中;壶腹器官主要分布在吻部腹面,3~4个聚集在一起,呈"梅花状",分布紧密,并且该部分皮肤表面凹陷,形成花朵状凹穴;侧线系统发育完善。  相似文献   

11.
The lateral line system of teleost fish is composed of mechanosensory receptors (neuromasts), comprising superficial receptors and others embedded in canals running under the skin. Canal diameter and size of the canal neuromasts are correlated with increasing body size, thus providing a very simple system to investigate mechanisms underlying the coordination between organ growth and body size. Here, we examine the development of the trunk lateral line canal system in zebrafish. We demonstrated that trunk canals originate from scales through a bone remodeling process, which we suggest is essential for the normal growth of canals and canal neuromasts. Moreover, we found that lateral line cells are required for the formation of canals, suggesting the existence of mutual interactions between the sensory system and surrounding connective tissues.  相似文献   

12.
Distribution, morphology, and orientation of superficial neuromasts and polarization of the hair cells within superficial neuromasts of the goldfish (Carassius auratus) were examined using fluorescence labeling and scanning electron microscopy. On each body side, goldfish have 1,800-2,000 superficial neuromasts distributed across the head, trunk and tail fin. Each superficial neuromast had about 14-32 hair cells that were arranged in the sensory epithelium with the axis of best sensitivity aligned perpendicular to the long axis of the neuromast. Hair cell polarization was rostro-caudal in most superficial neuromasts on trunk scales (with the exception of those on the lateral line scales), or on the tail fin. On lateral line scales, the most frequent hair cell polarization was dorso-ventral in 45% and rostro-caudal in 20% of the superficial neuromasts. On individual trunk scales, superficial neuromasts were organized in rows which in most scales showed similar orientations with angle deviations smaller than 45 degrees . In about 16% of all trunk scales, groups of superficial neuromasts in the dorsal and ventral half of the scale were oriented orthogonal to each other. On the head, most superficial neuromasts were arranged in rows or groups of similar orientation with angle deviations smaller than 45 degrees . Neighboring groups of superficial neuromasts could differ with respect to their orientation. The most frequent hair cell polarization was dorso-ventral in front of the eyes and on the ventral mandible and rostro-caudal below the eye and on the operculum.  相似文献   

13.
Aspects of early development in the Adriatic sturgeon Acipenser naccarii   总被引:1,自引:0,他引:1  
This study investigates the development of the sensory-cutaneous apparatus and digestive tract of Adriatic sturgeon (Acipenser naccarii). Light and electron microscopy observations were carried out on various developmental stages, from hatching to 180 days old.
At hatching, sturgeon pre-larvae exhibit differentiation of olfactory sensory cells. By day 4 taste buds are differentiated on lips and barbels. At 12 days after hatching, the larvae are equipped with an extensive ventral cephalic sensory apparatus. Electrosensory organs are arranged in regular lines in the rostral ventral region, and taste receptors are organised in parallel rows on and inside the lips as well as on the external side of the barbel. Ventral free neuromasts are positioned in rostral grooves. The retina is completely differentiated in each stratum. At this stage, larvae show canine-like teeth on lips and pharynx, and the specific mucosae of the different digestive regions are differentiated. By day 36 the canine-like teeth are located exclusively on the tongue and roof of the buccal cavity, and the mouth is protrusible. At 180 days differentiation is still not completed, and although teeth have disappeared from the palate, they still persist along a central line on the tongue.  相似文献   

14.
Weakfish larvae, Cynoscion regalis (Bloch and Schneider), were used in laboratory experiments, during May and June 1991–1993, to examine the effects of varying irradiance levels on capture and ingestion of Zooplankton prey (rotifers). Treatments consisted of six different irradiance levels: no light, 5, 11, 15, 20, and 500 × 1012 quanta·cm−2·s−1. These levels are typical of the irradiance range found in a 10-m water column during the late-spring, weakfish spawning season in Delaware Bay. Early-stage larvae (8 days post-hatching) did not feed in total darkness, and there was no difference in the incidence of feeding among the other treatment groups. Similarly, late-stage larvae (13 days post-hatching) showed no significant difference between the incidence of feeding in darkness and at 5 × 1012 quanta·cm−2 s−1, though feeding within these two intensities was significantly lower than feeding in the other light levels. Results of a subsequent experiment indicated that the ability to feed in total darkness may depend on the abundance of available prey. Scanning electron microscope analysis of preserved weakfish larvae showed that neuromasts were not fully developed until larvae had reached at least 12 days post-hatching, and that younger larvae had only lateral line pores along the body trunk. There were no neuromasts evident on the head region, regardless of age. Thus, neuromasts may be involved in the capture of prey in darkness.  相似文献   

15.
The relatively simple structural organization of the cranial lateral line system of bony fishes provides a valuable context in which to explore the ways in which variation in post‐embryonic development results in functionally distinct phenotypes, thus providing a link between development, evolution, and behavior. Vital fluorescent staining, histology, and scanning electron microscopy were used to describe the distribution, morphology, and ontogeny of the canal and superficial neuromasts on the head of two Lake Malawi cichlids with contrasting lateral line canal phenotypes (Tramitichromis sp. [narrow‐simple, well‐ossified canals with small pores] and Aulonocara stuartgranti [widened, more weakly ossified canals with large pores]). This work showed that: 1) the patterning (number, distribution) of canal neuromasts, and the process of canal morphogenesis typical of bony fishes was the same in the two species, 2) two sub‐populations of neuromasts (presumptive canal neuromasts and superficial neuromasts) are already distinguishable in small larvae and demonstrate distinctive ontogenetic trajectories in both species, 3) canal neuromasts differ with respect to ontogenetic trends in size and proportions between canals and between species, 4) the size, shape, configuration, physiological orientation, and overall rate of proliferation varies among the nine series of superficial neuromasts, which are found in both species, and 5) in Aulonocara, in particular, a consistent number of canal neuromasts accompanied by variability in the formation of canal pores during canal morphogenesis demonstrates independence of early and late phases of lateral line development. This work provides a new perspective on the contributions of post‐embryonic phases of lateral line development and to the generation of distinct phenotypes in the lateral line system of bony fishes. J. Morphol. 277:1273–1291, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
The pelagic eggs, yolk-sac and pelagic larvae of the macrourid fish, Coryphaenoides marginatus, from Suruga Bay in southern Japan, are described. The identification of the pelagic eggs based on 16S rRNA gene nucleotide sequences agreed with that obtained from morphological analyses. The spherical eggs, 1.14–1.30 mm in diameter, contained a single oil globule 0.30–0.38 mm in diameter, and had hexagonally patterned ornamentation on the chorion, 0.025–0.033 mm in width. Many melanophores were present on the anterodorsal region of the embryo after the caudal end had detached from the yolk. Within a day after hatching, each of the yolk-sac larvae had a body axis that was bent slightly at the anterior trunk region, many dorsal and lateral melanophores on the trunk plus several on the gut, and small irregular wrinkles on the dorsal and anal fin membranes. The pelagic larvae had a short caudal region in comparison to other known congeners (length 2.0–3.2+ times head length vs. 4–7, respectively), a short stalked pectoral fin base, and no elongate first dorsal and pelvic fin rays. They were further characterized by the presence of numerous very dense melanophores from just behind the eye to the anterior part of the caudal region at 5.1 mm head length (25.8+ mm total length). The significant difference in vertical distribution between the pelagic eggs and larvae (dominant depths ca. 200–350 m vs. ca. 10–100 m, respectively), with no subsequent collection of pelagic larvae with greater than 6 mm head length, indicate two stages (rising and falling) of ontogenic vertical migration.  相似文献   

17.
The lateral line system of teleost fishes consists of an array of superficial and canal neuromasts (CN). Number and distribution of neuromasts and the morphology of the lateral line canals vary across species. We investigated the morphology of the lateral line system in four diurnal European cyprinids, the limnophilic bitterling (Rhodeus sericeus), the indifferent gudgeon (Gobio gobio), and ide (Leuciscus idus), and the rheophilic minnow (Phoxinus phoxinus). All fish had lateral line canals on head and trunk. The total number of both, CN and superficial neuromasts (SN), was comparable in minnow and ide but was greater than in gudgeon and bitterling. The ratio of SNs to CNs for the head was comparable in minnow and bitterling but was greater in gudgeon and ide. The SN‐to‐CN ratio for the trunk was greatest in bitterling. Polarization of hair cells in CNs was in the direction of the canal. Polarization of hair cells in SNs depended on body area. In cephalic SNs, hair cell polarization was dorso‐ventral or rostro‐caudal. In trunk SNs, it was rostro‐caudal on lateral line scales and dorso‐ventral on other trunk scales. On the caudal fin, hair cell polarization was rostro‐caudal. The data show that, in the four species studied here, number, distribution, and orientation of CNs and SNs cannot be unequivocally related to habitat. J. Morphol. 275:357–370, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
鲈鲤仔鱼的异速生长模式   总被引:4,自引:0,他引:4  
采用实验生态学方法研究了鲈鲤(Percocypris pingi pingi)仔鱼(0~57日龄)的异速生长模式.结果显示:鲈鲤仔鱼全长由慢速生长到快速生长的转折点为25日龄;其多数外部器官均具有异速生长特点,头部和尾部的生长快于躯干部,均在22 ~ 27日龄出现生长拐点;眼径在14 ~ 15日龄较早出现生长拐点,促使眼睛充分发育,以提高早期仔鱼开口期摄食外源食物的能力;吻长在33~34日龄出现生长拐点,促进了口的充分发育,以适应不同的饵料环境;胸鳍、背鳍、尾鳍、臀鳍和腹鳍分别在13~14日龄、31~32日龄、32 ~33日龄、38 ~39日龄、43 ~ 44日龄出现生长拐点,除胸鳍和尾鳍外,其余各鳍的鳍条均在拐点处分化完全,即鲈鲤仔鱼的游泳能力已得到大幅提高.研究表明,鲈鲤仔鱼的异速生长模式,保证了各重要功能器官的充分发育,以适应多变的环境,有效地保障了其早期的生存,可为育苗生产和野生早期资源的保护提供技术支撑.  相似文献   

19.
Ontogeny and phylogeny of the trunk lateral line system in cichlid fishes   总被引:1,自引:0,他引:1  
An examination of the ontogeny of the lateral line trunk canal and the diversity of adult trunk canal patterns among cichlids indicates that bidirectional canal formation is a general ontogenetic pattern in the Cichlidae with the exception of Cichla and those few species with a complete trunk canal pattern. In addition to the tubed scales which make up the trunk canal, some lateral line scales have pits containing superficial neuromasts. These are recognized as components of the lateral line system of the trunk in adult cichlids for the first time. Eight trunk canal patterns that are variations on a simple disjunct pattern are defined among the 17 cichlid genera examined. Using bidirectional canal formation as a developmental model, these patterns can be placed along an ontogenetic spectrum. This suggests that heterochrony (alterations in the timing of development) is an important mechanism of evolutionary change in the lateral line system of the trunk in cichlid fishes.  相似文献   

20.
Development of the lateral line system in the sea bass   总被引:2,自引:0,他引:2  
Using light and electron microscopy, a study of the development of the lateral line system of the sea bass Dicentrarchus labrax , from embryo to adult, revealed that the first free neuromasts appeared on the head shortly before hatching and multiplied during the larval stage. They were aligned on the head and trunk in a pattern which corresponded to the location of future canals. The transition to the juvenile stage marked the start of important anatomical changes during which head and trunk canals were formed successively. Neuromasts, with a cupula and consisting of standard sensory cells and supporting cells, were characterized by bidirectional polarity. The exact location of the first neuromast formed in the embryo was identified and its differentiation monitored from primordium to eruption. This neuromast was distinguishable from the others by its radial polarity. Correlations were made between the development of the lateral line system and the behaviour of the sea bass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号