首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Cowpea mosaic virus (CPMV) is the type member of the comovirus group, which contains 14 different plant viruses that have the same structural organization of genomic RNAs and virions and use the same mechanism for expression of the viral RNAs. The combined structure and organization of the two CPMV genomic RNAs is strikingly similar to that of the single genome of animal picornaviruses. This suggests a common ancestry and similar replication mechanisms. CPMV is by far the best-studied comovirus and we shall limit this review to some recent data on this virus. For additional general information the reader is referred to other recent reviews on CPMV and comoviruses1,2.  相似文献   

5.
6.
Four cultivars of cowpea (Vigna unguiculata [L]. Walp.) were infected with cowpea aphid-borne mosaic virus (CABMV) by natural infection in field plots. Seeds taken from these plants were tested for the presence of the virus by ELISA and symptom observation on the plantlets grown from the seeds. A biotin/ streptavidin ELISA technique was used and found to be more sensitive than a standard ELISA protocol for detecting CABMV infection in seed. There was a good correlation between the ELISA detection of CABMV in tissue taken from single cowpea seeds and subsequent development of infected plants grown from the same seeds. The ELISA technique is reliable for selecting CABMV-free stocks of cowpea seeds.  相似文献   

7.
The nucleotide sequences of the subgenomic coat protein messengers (RNA4's) of two related bromoviruses, brome mosaic virus (BMV) and cowpea chlorotic mottle virus (CCMV), have been determined by direct RNA and CDNA sequencing without cloning. BMV RNA4 is 876 b long including a 5' noncoding region of nine nucleotides and a 3' noncoding region of 300 nucleotides. CCMV RNA 4 is 824 b long, including a 5' noncoding region of 10 nucleotides and a 3' noncoding region of 244 nucleotides. The encoded coat proteins are similar in length (188 amino acids for BMV and 189 amino acids for CCMV) and display about 70% homology in their amino acid sequences. Length difference between the two RNAs is due mostly to a single deletion, in CCMV with respect to BMV, of about 57 b immediately following the coding region. Allowing for this deletion the RNAs are indicate that mutations leading to divergence were constrained in the coding region primarily by the requirement of maintaining a favorable coat protein structure and in the 3' noncoding region primarily by the requirement of maintaining a favorable RNA spatial configuration.  相似文献   

8.
The nucleotide sequence of cowpea mosaic virus B RNA   总被引:16,自引:6,他引:16       下载免费PDF全文
The complete sequence of the bottom component RNA (B RNA) of cowpea mosaic virus (CPMV) has been determined. Restriction enzyme fragments of double-stranded cDNA were cloned in M13 and the sequence of the inserts was determined by a combination of enzymatic and chemical sequencing techniques. Additional sequence information was obtained by primed synthesis on first strand cDNA. The complete sequence deduced is 5889 nucleotides long excluding the 3' poly(A), and contains an open reading frame sufficient to code for a polypeptide of mol. wt. 207 760. The coding region is flanked by a 5' leader sequence of 206 nucleotides and a 3' non-coding region of 82 residues which does not contain a polyadenylation signal.  相似文献   

9.
Cell-to-cell movement of cowpea mosaic virus particles in plants takes place with the help of tubules that penetrate presumably modified plasmodesmata. These tubules, which are built up by the virus-encoded 48-kDa movement protein (MP), are also formed on single protoplast cells. To determine whether the MP contains different functional domains, the effect of mutations in its coding region was studied. Mutations between amino acids 1 and 313 led to complete abolishment of the tubule-forming capacity, while a deletion in the C-terminal region resulted in tubules that could not take up virus particles. From these observations, it is concluded that the MP contains at least two distinct domains, one that is involved in tubule formation and that spans amino acids 1 and 313 and a second that is probably involved in the incorporation of virus particles in the tubule and that is located in the C terminus between amino acids 314 and 331.  相似文献   

10.
11.
Monocistronic translation of alfalfa mosaic virus RNAs.   总被引:3,自引:0,他引:3       下载免费PDF全文
The four alfalfa mosaic virus RNAs (respectively 24 S, 20 S, 17 S and 12 S) have been used separately as messengers in two in vitro protein synthesizing systems: wheat germ and rabbit reticulocyte lysate. In both systems a polypeptide corresponding to the translation of the entire length of the RNA can be found for RNAs 24 S, 20 S and 12 S, but not for 17 S RNA, the translation product of which is only 35,000 daltons. The number of initiation sites has been determined for each RNA by analyzing the initiation peptides synthesized in the presence of spasomycin and show that there is only one initiation or binding site perRNA. We thus conclude that each AMV RNA behaves as a monocistronic messenger in in vitro translating systems.  相似文献   

12.
A yellow strain of cowpea mosaic virus (CPMV) was transmitted in cowpea by two thrips, Sericothrips occipitalis and Taeniothrips sjostedti; two chrysomelid beetles, Ootheca mutabilis and Paraluperodes quaternus; a curculionid beetle, Nematocerus acerbus; and two acridid grasshoppers, Catantops spissus spissus and Zonocerus variegatus. Summarizing trials with single insects, the efficiency of transmission of CPMV averaged 18—21% for N. acerbus and the two grasshoppers, 55% for P. quaternus, and 71% for O. mutabilis. Twenty-two and 40% of the plants exposed to large populations of S. occipitalis and T. sjostedti, respectively, were infected. In three trials with an aphid, Aphis craccivora, 4 of 49 plants were infected with CPMV, but these infections were considered spurious because no infections occurred in any of 63 plants exposed to this insect in four other trials. A coreid bug, Riptortus dentipes, did not transmit CPMV. Mosaic symptoms in infected plants appeared 5—39 days after they were exposed to vectors. Infective virus was recovered from fresh faecal pellets of each grasshopper vector.  相似文献   

13.
Upon inoculation of cowpea protoplasts with the bottom component of cowpea mosaic virus, at least six virus-induced proteins (with sizes of 170, 110, 87, 84, 60, and 32 kilodaltons) are synthesized, but not the capsid proteins (37 and 23 kilodaltons). These bottom-component-induced proteins were studied with respect to their genetic origin and mode of synthesis. The analyses were based on their electrophoretic peptide patterns resulting from partial digestion with Staphylococcus aureus protease V8. Comparison of the peptide patterns of the virus-induced proteins with those of the cowpea mosaic virus RNA-coded polypeptides produced in rabbit reticulocyte lysate showed that the 170- and 32-kilodalton polypeptides, which are the first viral products in cowpea mosaic virus-infected cells, were actually coded by the bottom component RNA of the virus. The 110-, 87-, and 84-kilodalton polypeptides, and possibly the 60-kilodalton polypeptide, appeared to have amino acid sequences in common with the 170-kilodalton polypeptide, demonstrating that they were virus coded as well. The results indicated that cowpea mosaic virus bottom component RNA was translated in vivo into a single 200-kilodalton polyprotein from which probably all bottom-component-specific proteins arose by three successive cleavages.  相似文献   

14.
The amino acid sequence of the coat protein of the cowpea strain of tobacco mosaic virus (cowpea virus) has been determined. The tryptic peptide overlaps were obtained by digesting the protein with chymotrypsin and separating and analysing the lysine-and arginine-containing chymotryptic peptides. The primary structure of cowpea virus protein has been found to differ markedly from that of any other known strain of tobacco mosaic virus, and contains 3 amino acid residues more and 96 amino acid changes from the type strain. The significance of the distribution of those areas of the protein in which the amino acid residues are the same for all naturally occurring strains and chemically induced mutants of tobacco mosaic virus so far studied and the residues that form the important carboxyl-carboxylate pairs are discussed.  相似文献   

15.
Mutational analysis of upstream AUG codons of poliovirus RNA.   总被引:12,自引:19,他引:12       下载免费PDF全文
The 5' untranslated region of poliovirus type 2 Lansing RNA consists of 744 nucleotides containing seven AUG codons which are followed by in-frame termination codons, thus forming short open reading frames (ORFs). To determine the biological significance of these small ORFs, all of the upstream AUG codons were mutated to UUG. The point mutations were introduced into an infectious poliovirus cDNA clone, and RNA transcribed in vitro from the altered cDNA was transfected into HeLa cells to recover the virus. Mutation of AUG 7 resulted in a virus (called R2-5NC-14) with a small-plaque phenotype, whereas mutation of the other six AUG codons produced virus with a wild-type plaque morphology. To determine whether the small-plaque phenotype of R2-5NC-14 was due to altered translational efficiency of the viral mRNA, we constructed chimeric mRNAs containing the 5' noncoding region of poliovirus mRNA fused to the chloramphenicol acetyltransferase (CAT) coding sequence. mRNA containing a mutated AUG 7 codon showed decreased translational efficiency in vitro. The results indicate that the upstream ORFs of poliovirus RNA are not essential for viral replication and do not act as barriers to the translation of poliovirus mRNA. AUG 7 and flanking sequences may play a positive acting role in poliovirus RNA translation.  相似文献   

16.
The structure of cucumber mosaic virus (CMV; strain Fny) has been determined to a 3.2-A resolution using X-ray crystallography. Despite the fact that CMV has only 19% capsid protein sequence identity (34% similarity) to cowpea chlorotic mottle virus (CCMV), the core structures of these two members of the Bromoviridae family are highly homologous. As suggested by a previous low-resolution structural study, the 305-A diameter (maximum) of CMV is approximately 12 A larger than that of CCMV. In CCMV, the structures of the A, B, and C subunits are nearly identical except in their N termini. In contrast, the structures of two loops in subunit A of CMV differ from those in B and C. These loops are 6 and 7 residues longer than the analogous regions in CCMV. Unlike that of CCMV, the capsid of CMV does not undergo swelling at pH 7.0 and is stable at pH 9.0. This may be partly due to the fact that the N termini of the B and C subunits form a unique bundle of six amphipathic helices oriented down into the virion core at the threefold axes. In addition, while CCMV has a cluster of aspartic acid residues at the quasi-threefold axis that are proposed to bind metal in a pH-dependent manner, this cluster is replaced by complementing acids and bases in CMV. Finally, this structure clearly demonstrates that the residues important for aphid transmission lie at the outermost portion of the betaH-betaI loop and yields details of the portions of the virus that are hypothesized to mediate binding to aphid mouthparts.  相似文献   

17.
《FEBS letters》1987,214(2):313-316
The terminal structures of the double-stranded replicative forms (RFs) of barley stripe mosaic virus (BSMV) RNAs 1–3 have been investigated. All three BSMV RFs have identical right-hand ends but unique left-hand ends. The plus (+) strands of RFs lack the 3′-ultimate A typical for the encapsidated BSMV RNAS. The 3′-termini of the minus (−) strands contain an unpaired G. It was demonstrated that the internal poly(A) tract of BSMV genome has an equivalent poly(U)-counterpart in the RF (−) strands. The possible role of these peculiarities of BSMV RF structure in RNA replication is discussed.  相似文献   

18.
East African strains of cowpea aphid-borne mosaic virus   总被引:1,自引:0,他引:1  
Cowpea aphid-borne mosaic virus (CAMV) was isolated for the first time in East Africa where three distinct strains, type, veinbanding and mild, were differentiated by host range and serology. The three strains infected 17/38, 18/37 and 10/35 legume species, and 11/21, 7/21 and 3/19 non-legume species, respectively. The viruses were propagated in cowpea and assayed in Chenopodium amaranticolor. Isolates of all three strains had similar in vitro properties: dilution end point between 10-3 and 10-4; thermal inactivation point between 56 and 58 °C; longevity in vitro between 2 and 3 days. Infectivity of sap from frozen leaves was high after 4 wk but much less after 7 wk; infectivity was largely precipitated by 50% acetone but inactivated by 50% ethanol. High yields of virus were consistently obtained from cowpea by extracting systemically infected leaves in 0.5 m sodium citrate containing 1% mercaptoethanol (pH 8.1), and clarifying with 8.5 ml n-butanol/100 ml sap. Virus preparations contained numerous unaggregated and aggregated virus particles c. 750 nm long and contained components with sedimentation coefficients (s°20, w) of 150S and 175S (presumably unaggregated and aggregated particles, respectively). CAMV is serologically distantly related to bean common mosaic virus, but not to bean yellow mosaic or eight other morphologically similar viruses. It is a typical but distinct member of the potato virus Y group.  相似文献   

19.
Selection of AUG initiation codons differs in plants and animals.   总被引:125,自引:10,他引:125       下载免费PDF全文
The influence of the nucleotide at position -3 relative to the AUG initiation codon on the initiation of protein synthesis was studied in two different in vitro translation systems using synthetic mRNAs. The four mRNAs, transcribed from cDNAs directed by an SP6 promoter, were identical except for mutations at nucleotide -3. In each case, translation of mRNAs produced a single protein of Mr = 12,600. Relative translational efficiencies showed a hierarchy in the reticulocyte lysate system (100, 85, 61 and 38% for A, G, U and C in position -3, respectively) but no differences in the wheat germ system. Differential mRNA degradation or polypeptide chain elongation were excluded as causes of the differences observed in translation in the reticulocyte lysate. mRNA competition increased the differences observed in translational efficiencies in reticulocyte lysate but showed no effect in wheat germ. Analysis of 61 plant and 209 animal mRNA sequences revealed qualitative and quantitative differences between the consensus sequences surrounding AUG initiation codons. Whereas the consensus sequence for animals was CACCAUG that for plants was AACAAUGGC. Both the structural and functional findings suggest that the factors which select AUG initiation codons in plants and animals differ significantly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号