首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Focal adhesions are sites for integrin-mediated attachment of cultured cells to the extracellular matrix. Localization studies have shown that focal adhesions can be stained by antiphosphotyrosine antibodies, but the role of tyrosine-phosphorylated proteins in focal adhesions is not known. By using ventral plasma membranes prepared from chicken embryo fibroblasts spread on the substrate, we present evidence for the preferential localization of a minor pool of tyrosine-phosphorylated paxillin in focal adhesions. Ventral plasma membranes showed an enrichment in β1-integrins, and in several tyrosine-phosphorylated polypeptides, while focal adhesion proteins like vinculin and paxillin, although localized to focal adhesions in ventral plasma membranes, were not particularly enriched in these preparations compared to whole cell lysates. Biochemical and morphological analysis of ventral plasma membranes showed a dramatic increase in the level of tyrosine-phosphorylation of the pool of paxillin localized to the adhesive sites, when compared to the paxillin present in whole cell lysates. The observed preferential localization of tyrosine-phosphorylated paxillin to focal adhesions may represent a general mechanism to compartmentalize focal adhesion components from large non-phosphorylated, cytosolic pools.  相似文献   

2.
The ArfGAP paxillin kinase linker (PKL)/G protein-coupled receptor kinase-interacting protein (GIT)2 has been implicated in regulating cell spreading and motility through its transient recruitment of the p21-activated kinase (PAK) to focal adhesions. The Nck-PAK-PIX-PKL protein complex is recruited to focal adhesions by paxillin upon integrin engagement and Rac activation. In this report, we identify tyrosine-phosphorylated PKL as a protein that associates with the SH3-SH2 adaptor Nck, in a Src-dependent manner, after cell adhesion to fibronectin. Both cell adhesion and Rac activation stimulated PKL tyrosine phosphorylation. PKL is phosphorylated on tyrosine residues 286/392/592 by Src and/or FAK and these sites are required for PKL localization to focal adhesions and for paxillin binding. The absence of either FAK or Src-family kinases prevents PKL phosphorylation and suppresses localization of PKL but not GIT1 to focal adhesions after Rac activation. Expression of an activated FAK mutant in the absence of Src-family kinases partially restores PKL localization, suggesting that Src activation of FAK is required for PKL phosphorylation and localization. Overexpression of the nonphosphorylated GFP-PKL Triple YF mutant stimulates cell spreading and protrusiveness, similar to overexpression of a paxillin mutant that does not bind PKL, suggesting that failure to recruit PKL to focal adhesions interferes with normal cell spreading and motility.  相似文献   

3.
Temporal and spatial regulation of actin-based cytoskeletal organization and focal adhesion formation play an essential role in cell migration. Here, we show that tyrosine phosphorylation of a focal adhesion protein, paxillin, crucially participates in these regulations. We found that tyrosine phosphorylation of paxillin was a prominent event upon integrin activation during epithelial-mesenchymal trans-differentiation and cell migration. Four major tyrosine phosphorylation sites were identified, and two of them were highly inducible upon integrin activation. Paxillin exhibits three distinct subcellular localizations as follows: localization along the cell periphery colocalized with circumferential actin meshworks, macroaggregation at focal adhesions connected to actin stress fibers, and diffuse cytoplasmic distribution. Tyrosine phosphorylation of paxillin localized at the cell periphery and focal adhesions was shown using phosphorylation site-specific antibodies. Mutations in the phosphorylation sites affected the peripheral localization of paxillin and paxillin-containing focal adhesion formation during cell migration and cell-cell collision, accompanied by altered actin organizations. Our analysis indicates that phosphorylation of multiple tyrosines in paxillin alpha is necessary for the proper function of paxillin and is involved in the temporospatial regulation of focal adhesion formation and actin cytoskeletal organization in motile cells.  相似文献   

4.
Integrins are important receptors for neuronal adhesion to laminin, which is one of the best promoters of neurite outgrowth. The present study was carried out to understand some of the intracellular mechanisms which allow integrin-mediated neurite extension on laminin. In chicken retinal neurons, integrin-mediated adhesion to laminin and antibody-induced integrin clustering caused an increase in tyrosine phosphorylation of paxillin and focal adhesion kinase. The kinetics of phosphorylation and dephosphorylation of these proteins were different in neurons plated on laminin, compared to neurons in which the receptors were clustered with anti-integrin antibodies. Analysis of sucrose velocity gradients could not show any association of paxillin and focal adhesion kinase with the integrin receptors. On the other hand, by using digitonin and milder extraction conditions, we found an enrichment of the tyrosine-phosphorylated polypeptides in the cytoskeletal, digitonin-insoluble fraction. Furthermore, neuronal adhesion induced a dramatic increase in the fraction of tyrosine-phosphorylated paxillin recovered with the digitonin-insoluble fraction, suggesting redistribution of this protein following adhesion of neurons to laminin. Localization studies on the detergent-insoluble fraction showed codistribution of both paxillin and focal adhesion kinase with integrins. We also found that paxillin tyrosine phosphorylation, but not paxillin expression, is developmentally regulated in the retina. Our results show that integrin-mediated neuronal adhesion leads to the accumulation of a pool of highly phosphorylated proteins at adhesion sites. There they may be responsible for the reorganization of the cytoskeleton, which underlies the process of neurite extension.  相似文献   

5.
This study establishes that the physical state of the extracellular matrix can regulate integrin-mediated cytoskeletal assembly and tyrosine phosphorylation to generate two distinct types of cell-matrix adhesions. In primary fibroblasts, alpha(5)beta(1) integrin associates mainly with fibronectin fibrils and forms adhesions structurally distinct from focal contacts, independent of actomyosin-mediated cell contractility. These "fibrillar adhesions" are enriched in tensin, but contain low levels of the typical focal contact components paxillin, vinculin, and tyrosine-phosphorylated proteins. However, when the fibronectin is covalently linked to the substrate, alpha(5)beta(1) integrin forms highly tyrosine-phosphorylated, "classical" focal contacts containing high levels of paxillin and vinculin. These experiments indicate that the physical state of the matrix, not just its molecular composition, is a critical factor in defining cytoskeletal organization and phosphorylation at adhesion sites. We propose that molecular organization of adhesion sites is controlled by at least two mechanisms: 1) specific integrins associate with their ligands in transmembrane complexes with appropriate cytoplasmic anchor proteins (e.g., fibronectin-alpha(5)beta(1) integrin-tensin complexes), and 2) physical properties (e.g., rigidity) of the extracellular matrix regulate local tension at adhesion sites and activate local tyrosine phosphorylation, recruiting a variety of plaque molecules to these sites. These mechanisms generate structurally and functionally distinct types of matrix adhesions in fibroblasts.  相似文献   

6.
Paxillin acts as an adaptor protein in integrin signaling. We have shown that paxillin exists in a relatively large cytoplasmic pool, including perinuclear areas, in addition to focal complexes formed at the cell periphery and focal adhesions formed underneath the cell. Several ADP-ribosylation factor (ARF) GTPase-activating proteins (GAPs; ARFGAPs) have been shown to associate with paxillin. We report here that Git2-short/KIAA0148 exhibits properties of a paxillin-associated ARFGAP and appears to be colocalized with paxillin, primarily at perinuclear areas. A fraction of Git2-short was also localized to actin-rich structures at the cell periphery. Unlike paxillin, however, Git2-short did not accumulate at focal adhesions underneath the cell. Git2-short is a short isoform of Git2, which is highly homologous to p95PKL, another paxillin-binding protein, and showed a weaker binding affinity toward paxillin than that of Git2. The ARFGAP activities of Git2 and Git2-short have been previously demonstrated in vitro, and we provided evidence that at least one ARF isoform, ARF1, is an intracellular substrate for the GAP activity of Git2-short. We also showed that Git2-short could antagonize several known ARF1-mediated phenotypes: overexpression of Git2-short, but not its GAP-inactive mutant, caused the redistribution of Golgi protein beta-COP and reduced the amounts of paxillin-containing focal adhesions and actin stress fibers. Perinuclear localization of paxillin, which was sensitive to ARF inactivation, was also affected by Git2-short overexpression. On the other hand, paxillin localization to focal complexes at the cell periphery was unaffected or even augmented by Git2-short overexpression. Therefore, an ARFGAP protein weakly interacting with paxillin, Git2-short, exhibits pleiotropic functions involving the regulation of Golgi organization, actin cytoskeletal organization, and subcellular localization of paxillin, all of which need to be coordinately regulated during integrin-mediated cell adhesion and intracellular signaling.  相似文献   

7.
Microinjection and scrape-loading have been used to load cells in culture with soluble protein tyrosine phosphatases (FTPs). The introduction of protein tyrosine phosphatases into cells caused a rapid (within 5 minutes) decrease in tyrosine phosphorylation of major tyrosine phosphorylated substrates, including the focal adhesion kinase and paxillin. This decrease was detected both by blotting whole cell lysates with anti-phosphotyrosine antibodies and visualizing the phosphotyrosine in focal adhesions by immunofluorescence microscopy. After 30 minutes, many of the cells injected with tyrosine phosphatases revealed disruption of focal adhesions and stress fibers. To determine whether this disruption was due to the dephosphorylation of FAK and its substrates in focal adhesions, we have compared the effects of protein tyrosine phosphatase microinjection with the effects of displacing FAK from focal adhesions by microinjection of a dominant negative FAK construct. Although both procedures resulted in a marked decrease in the level of phosphotyrosine in focal adhesions, disruption of focal adhesions and stress fibers only occurred in cells loaded with exogenous protein tyrosine phosphatases. These results lead us to conclude that although tyrosine phosphorylation regulates focal adhesion and stress fiber stability, this does not involve FAK nor does it appear to involve tyrosine-phosphorylated proteins within focal adhesions. The critical tyrosine phosphorylation event is upstream of focal adhesions, a likely target being in the Rho pathway that regulates the formation of stress fibers and focal adhesions.  相似文献   

8.
Transformed cells often express elevated levels of tyrosine-phosphorylated proteins. Inhibition of protein tyrosine kinases causes reversion of malignant cells to the normal phenotype. In the present study, we evaluated the possibility that the reversion of human endometrial adenocarcinoma RL95-2 cells to a stationary phenotype induced by retinoic acid was associated with inhibition of tyrosine phosphorylation of cellular proteins. We found that retinoic acid decreased the levels of tyrosine-phosphorylated proteins, as assessed by immunostaining and immunoprecipitations using specific anti-phosphotyrosine antibodies. In addition, the inhibitors of tyrosine kinases herbimycin A and tyrphostin mimicked retinoic acid, inducing F-actin reorganization and increasing the size of RL95-2 cells, as determined by measurement of cell perimeters. Because focal adhesions that connect actin filaments with the plasma membrane are major sites of tyrosine phosphorylation, we further investigated whether selected focal adhesion proteins were affected by retinoic acid. We found that retinoic acid altered the localization of focal adhesion kinase. All-trans retinoic acid was effective in reducing the levels of focal adhesion kinase and paxillin protein. Thirteen-cis retinoic acid increased the levels of vinculin protein in the cytosolic fraction of cells. These changes are consistent with actin reorganization and reversion toward a stationary phenotype induced by retinoic acid in endometrial adenocarcinoma RL95-2 cells. Our results indicate that the differentiating effects of retinoids on endometrial cells are associated with decreases in tyrosine phosphorylation and changes in the levels and distribution of focal adhesion proteins. These findings suggest that signaling pathways that involve tyrosine kinases are potential targets for drug design against endometrial cancer. J. Cell. Physiol. 178:320–332, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

9.
Paxillin acts as an adaptor molecule in integrin signaling. Paxillin is localized to focal contacts but seems to also exist in a relatively large cytoplasmic pool. Here, we report the identification of a new paxillin-binding protein, PAG3 (paxillin-associated protein with ADP-ribosylation factor [ARF] GTPase-activating protein [GAP] activity, number 3), which is involved in regulation of the subcellular localization of paxillin. PAG3 bound to all paxillin isoforms and was induced during monocyte maturation, at which time paxillin expression is also increased and integrins are activated. PAG3 was diffusely distributed in the cytoplasm in premature monocytes but became localized at cell periphery in mature monocytes, a fraction of which then colocalized with paxillin. PAG3, on the other hand, did not accumulate at focal adhesion plaques, suggesting that PAG3 is not an integrin assembly protein. PAG3 was identical to KIAA0400/Papalpha, which was previously identified as a Pyk2-binding protein bearing a GAP activity toward several ARFs in vitro. Mammalian ARFs fall into three classes, and we showed that all classes could affect subcellular localization of paxillin. We also examined possible interaction of PAG3 with ARFs and showed evidence that at least one of them, ARF6, seems to be an intracellular substrate for GAP activity of PAG3. Moreover, overexpression of PAG3, but not its GAP-inactive mutant, inhibited paxillin recruitment to focal contacts and hampered cell migratory activities, whereas cell adhesion activities were almost unaffected. Therefore, our results demonstrate that paxillin recruitment to focal adhesions is not mediated by simple cytoplasmic diffusion; rather, PAG3 appears to be involved in this process, possibly through its GAP activity toward ARF proteins. Our result thus delineates a new aspect of regulation of cell migratory activities.  相似文献   

10.
The C-terminal Src kinase p50csk phosphorylates Src family tyrosine kinases and down-regulates their activity in vitro. To gain insight into the cellular functions of this potentially antioncogenic enzyme, we have overexpressed the csk cDNA by using an inducible promoter in HeLa cells. Despite some differences in basal Src activity in the clones analyzed, Src activity was not significantly suppressed, while the amount of p50csk and Csk activity increased at least 10-fold during 3 days of induction. Immunofluorescence for the induced p50csk was localized in the cytoplasm and distinctly in focal adhesions, in which the amount of phosphotyrosine containing proteins was also increased. Point and deletion mutagenesis experiments showed that localization in focal adhesions was dependent on the SH2 and SH3 domains of Csk but not on its catalytic activity. Csk formed a complex with the focal adhesion protein paxillin in cells, and its SH2 domain was shown to interact with pp125FAK and paxillin in vitro. After Csk induction, the cells became spherical and more loosely attached to the culture substratum, and the alpha v beta 5 integrin complex (vitronectin receptor) of focal adhesions was redistributed to a novel type of structure consisting of punctate plaques on the ventral cell surface. These phenotypic changes occurred in several clones analyzed and were totally reversible when Csk was switched off, but they did not occur in cells overexpressing the catalytically inactive Csk R-222 mutant or luciferase. Our results thus show that a fraction of cellular Csk is targeted to focal adhesions via its SH2 and SH3 domains, probably interacting with tyrosyl-phosphorylated focal adhesion proteins. They also suggest that Csk is involved in the regulation of integrins controlling cell attachment and shape.  相似文献   

11.
Anchorage to matrix is mediated for many cells not only by integrin-based focal adhesions but also by a parallel assembly of integral and peripheral membrane proteins known as the Dystroglycan Complex. Deficiencies in either dystrophin (mdx mice) or γ-sarcoglycan (γSG?/? mice) components of the Dystroglycan Complex lead to upregulation of numerous focal adhesion proteins, and the phosphoprotein paxillin proves to be among the most prominent. In mdx muscle, paxillin-Y31 and Y118 are both hyper-phosphorylated as are key sites in focal adhesion kinase (FAK) and the stretch-stimulatable pro-survival MAPK pathway, whereas γSG?/? muscle exhibits more erratic hyper-phosphorylation. In cultured myotubes, cell tension generated by myosin-II appears required for localization of paxillin to adhesions while vinculin appears more stably integrated. Overexpression of wild-type (WT) paxillin has no obvious effect on focal adhesion density or the physical strength of adhesion, but WT and a Y118F mutant promote contractile sarcomere formation whereas a Y31F mutant shows no effect, implicating Y31 in striation. Self-peeling of cells as well as Atomic Force Microscopy (AFM) probing of cells with or without myosin-II inhibition indicate an increase in cell tension within paxillin-overexpressing cells. However, prednisolone, a first-line glucocorticoid for muscular dystrophies, decreases cell tension without affecting paxillin at adhesions, suggesting a non-linear relationship between paxillin and cell tension. Hypertension that results from upregulation of integrin adhesions is thus a natural and treatable outcome of Dystroglycan Complex down-regulation.  相似文献   

12.
Requirements for localization of p130cas to focal adhesions.   总被引:8,自引:0,他引:8       下载免费PDF全文
p130cas (Cas) is an adapter protein that has an SH3 domain followed by multiple SH2 binding motifs in the substrate domain. It also contains a tyrosine residue and a proline-rich sequence near the C terminus, which are the binding sites for the SH2 and SH3 domains of Src kinase, respectively. Cas was originally identified as a major tyrosine-phosphorylated protein in v-Crk- and v-Src-transformed cells. Subsequently, Cas was shown to be inducibly tyrosine phosphorylated upon integrin stimulation; it is therefore regarded as one of the focal adhesion proteins. Using an immunofluorescence study, we examined the subcellular localization of Cas and determined the regions required for its localization to focal adhesions. In nontransformed cells, Cas was localized predominantly to the cytoplasm and partially to focal adhesions. However, in 527F-c-Src-transformed cells, Cas was localized mainly to podosomes, where the focal adhesion proteins are assembled. The localization of Cas to focal adhesions was also observed in cells expressing the kinase-negative 527F/295M-c-Src. A series of analyses with deletion mutants expressed in various cells revealed that the SH3 domain of Cas is necessary for its localization to focal adhesions in nontransformed cells while both the SH3 domain and the C-terminal Src binding domain of Cas are required in 527F-c-Src-transformed cells and fibronectin-stimulated cells. In addition, the localization of Cas to focal adhesions was abolished in Src-negative cells. These results demonstrate that the SH3 domain of Cas and the association of Cas with Src kinase play a pivotal role in the localization of Cas to focal adhesions.  相似文献   

13.
《The Journal of cell biology》1996,135(4):1109-1123
Paxillin is a 68-kD focal adhesion phosphoprotein that interacts with several proteins including members of the src family of tyrosine kinases, the transforming protein v-crk, and the cytoskeletal proteins vinculin and the tyrosine kinase, focal adhesion kinase (FAK). This suggests a function for paxillin as a molecular adaptor, responsible for the recruitment of structural and signaling molecules to focal adhesions. The current study defines the vinculin- and FAK-interaction domains on paxillin and identifies the principal paxillin focal adhesion targeting motif. Using truncation and deletion mutagenesis, we have localized the vinculin-binding site on paxillin to a contiguous stretch of 21 amino acids spanning residues 143-164. In contrast, maximal binding of FAK to paxillin requires, in addition to the region of paxillin spanning amino acids 143-164, a carboxyl-terminal domain encompassing residues 265-313. These data demonstrate the presence of a single binding site for vinculin, and at least two binding sites for FAK that are separated by an intervening stretch of 100 amino acids. Vinculin- and FAK-binding activities within amino acids 143-164 were separable since mutation of amino acid 151 from a negatively charged glutamic acid to the uncharged polar residue glutamine (E151Q) reduced binding of vinculin to paxillin by >90%, with no reduction in the binding capacity for FAK. The requirement for focal adhesion targeting of the vinculin- and FAK-binding regions within paxillin was determined by transfection into CHO.K1 fibroblasts. Significantly and surprisingly, paxillin constructs containing both deletion and point mutations that abrogate binding of FAK and/or vinculin were found to target effectively to focal adhesions. Additionally, expression of the amino-terminal 313 amino acids of paxillin containing intact vinculin- and FAK-binding domains failed to target to focal adhesions. This indicated other regions of paxillin were functioning as focal adhesion localization motifs. The carboxyl-terminal half of paxillin (amino acids 313-559) contains four contiguous double zinc finger LIM domains. Transfection analyses of sequential carboxyl-terminal truncations of the four individual LIM motifs and site-directed mutagenesis of LIM domains 1, 2, and 3, as well as deletion mutagenesis, revealed that the principal mechanism of targeting paxillin to focal adhesions is through LIM3. These data demonstrate that paxillin localizes to focal adhesions independent of interactions with vinculin and/or FAK, and represents the first definitive demonstration of LIM domains functioning as a primary determinant of protein subcellular localization to focal adhesions.  相似文献   

14.
Removal of colony-stimulating factor 1 (CSF-1) causes macrophages to round up and to increase their expression of protein tyrosine phosphatase phi (PTP phi). This is accompanied by the disruption of focal complexes and the formation of ruffles. Here we have overexpressed wild-type (WT) PTP phi and a phosphatase-inactive (C325S) mutant in a macrophage cell line in the presence and absence of CSF-1. In the presence of CSF-1, WT PTP phi induces cell rounding and ruffle formation, while C325S PTP phi has no effect. In contrast, in CSF-1-starved cells, C325S PTP phi behaves in a dominant negative fashion, preventing rounding and ruffling. Furthermore, C325S PTP phi increases adhesion in cycling cells, while WT PTP phi enhances motility. In WT PTP phi-overexpressing cells, the focal contact protein paxillin is selectively depleted from focal complexes and specifically dephosphorylated on tyrosine. In contrast, paxillin is hyperphosphorylated in C325S PTP phi-expressing cells. Moreover, a complex containing PTP phi, paxillin, and a paxillin-associated tyrosine kinase, Pyk2, can be immunoprecipitated from macrophage lysates, and the catalytic domain of PTP phi selectively binds paxillin and Pyk2 in vitro. Although PTP phi and Pyk2 do not colocalize with paxillin in focal complexes, all three proteins are colocalized in dorsal ruffles. The results suggest that paxillin is dephosphorylated by PTP phi in dorsal ruffles, using Pyk2 as a bridging molecule, resulting in a reduced pool of tyrosine-phosphorylated paxillin available for incorporation into focal complexes, thereby mediating CSF-1 regulation of macrophage morphology, adhesion, and motility.  相似文献   

15.
Many tumor cells are characterized by an increased net acid production. They extrude the excess protons mainly through the Na+/H+‐exchanger NHE1. An increased NHE1 activity elevates the metastatic potential of tumor cells. Cell migration, a key step in the metastatic cascade, requires the formation and release of integrin‐mediated cell–matrix contacts (focal adhesions). As NHE1 has been localized to focal adhesion sites, the present study tests the hypothesis that NHE1 generates measurable pH nanodomains right at focal adhesions. In order to ratiometrically measure pH close to the plasma membrane, we established a novel application of the total internal reflection fluorescence microscopy (TIRFM). Human melanoma cells were transfected with DsRed2‐paxillin to identify focal adhesion sites. The pH‐sensitive dyes BCECF and WGA‐fluorescein were used to measure the submembranous cytosolic and the pericellular pH, respectively. Distinct pH nanodomains were found at focal adhesions, particularly at those located at the cell front, where NHE1 was concentrated. These sites featured a remarkably alkaline cytosolic and an acidic pericellular pH and thus a much steeper proton gradient across the plasma membrane compared to the rest of the cell. The generation of pH nanodomains could be assigned to NHE1‐mediated H+ export because such pH domains could not be detected in NHE1‐deficient cells. Given that both integrin avidity and mechanisms contributing to adhesion turnover are pH‐sensitive, we propose that pH nanodomains at focal adhesions, locally created and maintained by NHE1 activity especially at the cell front, modulate adhesion dynamics in migrating cells. J. Cell. Physiol. 228: 1351–1358, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
We have investigated the mechanisms by which fibroblasts release their adhesions to the extracellular matrix substrata using a permeabilized cell system in which the adhesions remain relatively stable. A large number of different molecules were assayed for their effect on focal adhesion stability using immunofluorescence with antibodies against different focal adhesion constituents. ATP uniquely stimulates a rapid breakdown of focal adhesions, and at high ATP concentrations (> 5 mM), many cells are released from the dish. The remaining cells appear contracted with talin, alpha-actinin, and vinculin localized diffusely throughout the cell. Integrin containing tracks of variable intensity outline the regions where cells had resided before they detached from the substratum. At lower ATP concentrations (0.5-5 mM) the cells remain spread; however the focal adhesion components, including integrin, show an array of phenotypes ranging from diffusely localized throughout the cell to a localization in small, thin focal adhesions. Okadaic acid, a serine, threonine phosphatase inhibitor, enhances the contracted phenotype, even at low concentrations (0.5 mM) of ATP. The localization of focal adhesion components is different in okadaic acid-treated cells. In highly contracted cells, integrin is present in tracks where the cells resided before the contraction; however focal adhesions are no longer apparent. Talin, vinculin, and alpha-actinin localize in trabecular networks toward the periphery of the cell. Interestingly, phosphotyrosine staining as well as nascent, intracellular integrin precedes the recruitment of focal adhesion constituents into the trabecular network. The ATP-stimulated focal adhesion breakdown appears to operate through two mechanisms. First, ATP stimulates the tyrosine phosphorylation of several cytoskeletally associated proteins. These tyrosine phosphorylations correlated well with focal adhesion breakdown. Furthermore, addition of a recombinant, constitutively active tyrosine phosphatase inhibits both the tyrosine phosphorylations and the breakdown of the focal adhesions. None of the major tyrosine phosphoproteins are FAK, integrin, tensin, paxillin, or other phosphoproteins implicated in focal adhesion assembly. The second mechanism is cell contraction. High ATP concentrations, or lower ATP concentrations in the presence of okadaic acid induce cell contraction. Inhibiting the contraction by addition of a heptapeptide IRICRKG, which blocks the actin-myosin interaction, also inhibits focal adhesion breakdown. Neither the peptide nor the phosphatase inhibits focal adhesion breakdown under all conditions suggesting that both tension and tyrosine phosphorylations mediate the release of adhesions.  相似文献   

17.
The focal adhesion kinase (FAK) is discretely localized to focal adhesions via its C-terminal focal adhesion-targeting (FAT) sequence. FAK is regulated by integrin-dependent cell adhesion and can regulate tyrosine phosphorylation of downstream substrates, like paxillin. By the use of a mutational strategy, the regions of FAK that are required for cell adhesion-dependent regulation and for inducing tyrosine phosphorylation of paxillin were determined. The results show that the FAT sequence was the single region of FAK that was required for each function. Furthermore, the FAT sequence of FAK was replaced with a focal adhesion-targeting sequence from vinculin, and the resulting chimera exhibited cell adhesion-dependent tyrosine phosphorylation and could induce paxillin phosphorylation like wild-type FAK. These results suggest that subcellular localization is the major determinant of FAK function.  相似文献   

18.
Cytoskeletal remodeling is critical for cell adhesion, spreading, and motility. p21-activated kinase (PAK), an effector molecule of the Rho GTPases Rac and Cdc42, has been implicated in cytoskeletal remodeling and cell motility. PAK kinase activity and subcellular distribution are tightly regulated by rapid and transient localized Rac and Cdc42 activation, and by interactions mediated by adapter proteins. Here, we show that endogenous PAK is constitutively activated in certain breast cancer cell lines and that this active PAK is mislocalized to atypical focal adhesions in the absence of high levels of activated Rho GTPases. PAK localization to focal adhesions in these cells is independent of PAK kinase activity, NCK binding, or GTPase binding, but requires the association of PAK with PIX. Disruption of the PAK-PIX interaction with competitive peptides displaces PAK from focal adhesions and results in a substantial reduction in PAK hyperactivity. Moreover, disruption of the PAK-PIX interaction is associated with a dramatic decrease of PIX and paxillin in focal adhesions, indicating that PAK localization to these structures via PIX is required for the maintenance of paxillin- and PIX-containing focal adhesions. Abnormal regulation of PAK localization and activity may contribute to the tumorigenic properties of certain breast cancer cells.  相似文献   

19.
The integrin family of cell adhesion receptors are important for a diverse set of biological responses during development. Although many integrins have been shown to engage a similar set of cytoplasmic effector proteins in vitro, the importance of these proteins in the biological events mediated by different integrin receptors and ligands is uncertain. We have examined the role of one of the best-characterized integrin effectors, the focal adhesion protein paxillin, by disruption of the paxillin gene in mice. Paxillin was found to be critically involved in regulating the development of mesodermally derived structures such as heart and somites. The phenotype of the paxillin(-/-) mice closely resembles that of fibronectin(-/-) mice, suggesting that paxillin is a critical transducer of signals from fibronectin receptors during early development. Paxillin was also found to play a critical role in fibronectin receptor biology ex vivo since cultured paxillin-null fibroblasts display abnormal focal adhesions, reduced cell migration, inefficient localization of focal adhesion kinase (FAK), and reduced fibronectin-induced phosphorylation of FAK, Cas, and mitogen-activated protein kinase. In addition, we found that paxillin-null fibroblasts show some defects in the cortical cytoskeleton and cell spreading on fibronectin, raising the possibility that paxillin could play a role in structures distinct from focal adhesions. Thus, paxillin and fibronectin regulate some common embryonic developmental events, possibly due to paxillin modulation of fibronectin-regulated focal adhesion dynamics and organization of the membrane cytoskeletal structures that regulate cell migration and spreading.  相似文献   

20.
Vascular endothelial growth factor (VEGF) plays a significant role in blood-brain barrier breakdown and angiogenesis after brain injury. VEGF-induced endothelial cell migration is a key step in the angiogenic response and is mediated by an accelerated rate of focal adhesion complex assembly and disassembly. In this study, we identified the signaling mechanisms by which VEGF regulates human brain microvascular endothelial cell (HBMEC) integrity and assembly of focal adhesions, complexes comprised of scaffolding and signaling proteins organized by adhesion to the extracellular matrix. We found that VEGF treatment of HBMECs plated on laminin or fibronectin stimulated cytoskeletal organization and increased focal adhesion sites. Pretreating cells with VEGF antibodies or with the specific inhibitor SU-1498, which inhibits Flk-1/KDR receptor phosphorylation, blocked the ability of VEGF to stimulate focal adhesion assembly. VEGF induced the coupling of focal adhesion kinase (FAK) to integrin alphavbeta5 and tyrosine phosphorylation of the cytoskeletal components paxillin and p130cas. Additionally, FAK and related adhesion focal tyrosine kinase (RAFTK)/Pyk2 kinases were tyrosine-phosphorylated by VEGF and found to be important for focal adhesion sites. Overexpression of wild type RAFTK/Pyk2 increased cell spreading and the migration of HBMECs, whereas overexpression of catalytically inactive mutant RAFTK/Pyk2 markedly suppressed HBMEC spreading ( approximately 70%), adhesion ( approximately 82%), and migration ( approximately 65%). Furthermore, blocking of FAK by the dominant-interfering mutant FRNK (FAK-related non-kinase) significantly inhibited HBMEC spreading and migration and also disrupted focal adhesions. Thus, these studies define a mechanism for the regulatory role of VEGF in focal adhesion complex assembly in HBMECs via activation of FAK and RAFTK/Pyk2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号