首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Excitatory synapses onto projection neurons in the striatum, the input nucleus of the basal ganglia, play a key role in regulating basal ganglia circuit function and are a major site of long-term synaptic plasticity. Here, we review the mechanisms and regulation of both long-term potentiation and long-term depression at these synapses. In particular, we highlight the role that neuromodulators play in determining the strength and direction of plasticity, which ultimately shapes the balance of activity in basal ganglia circuits and regulates motor behavior.  相似文献   

2.
Development of central pattern generating circuits   总被引:2,自引:0,他引:2  
  相似文献   

3.
Rhythmic motor patterns can be induced in leg motor neurons of isolated locust thoracic ganglia by bath application of pilocarpine. We observed that the relative phases of levators and depressors differed in the three thoracic ganglia. Assuming that the central pattern generating circuits underlying these three segmental rhythms are probably very similar, we developed a simple model circuit that can produce any one of the three activity patterns and characteristic phase relationships by modifying a single synaptic weight. We show results of a computer simulation of this circuit using the neuronal simulator NeuraLOG/Spike. We built and tested an analog VLSI circuit implementation of this model circuit that exhibits the same range of behaviors as the computer simulation. This multidisciplinary strategy will be useful to explore the dynamics of central pattern generating networks coupled to physical actuators, and ultimately should allow the design of biologically realistic walking robots.  相似文献   

4.
The study of rhythmic motor pattern generation continues to be dominated by preparations in which cellular and circuit mechanisms can be bridged. Using these preparations, basic questions such as how circuits can be modified in order to generate a large number of patterns have begun to be answered. The action of neuromodulators on second messengers and channel proteins can provide a link between molecular studies and behavior. There has been a large increase in the use of computer simulations, and their usefulness as a way of studying pattern generation is growing.  相似文献   

5.
6.
The crucial role of dopamine (DA) in movement control is illustrated by the spectrum of motor disorders caused by either a deficiency or a hyperactivity of dopaminergic transmission in the basal ganglia. The degeneration of nigrostriatal DA neurons in Parkinson's disease causes poverty and slowness of movement. These symptoms are greatly improved by pharmacological DA replacement with L-3,4-dihydroxy-phenylalanine (L-DOPA), which however causes excessive involuntary movements in a majority of patients. L-DOPA-induced dyskinesia (abnormal involuntary movements) provides a topic of investigation at the interface between clinical and basic neuroscience. In this article, we review recent studies in rodent models, which have uncovered two principal alterations at the basis of the movement disorder, namely, an abnormal pre-synaptic handling of exogenous L-DOPA, and a hyper-reactive post-synaptic response to DA. Dysregulated nigrostriatal DA transmission causes secondary alterations in a variety of non-dopaminergic transmitter systems, the manipulation of which modulates dyskinesia through mechanisms that are presently unclear. Further research on L-DOPA-induced dyskinesia will contribute to a deeper understanding of the functional interplay between neurotransmitters and neuromodulators in the motor circuits of the basal ganglia.  相似文献   

7.
The sequential stepping of left and right limbs is a fundamental motor behavior that underlies walking movements. This relatively simple locomotor behavior is generated by the rhythmic activity of motor neurons under the control of spinal neural networks known as central pattern generators (CPGs) that comprise multiple interneuron cell types. Little, however, is known about the identity and contribution of defined interneuronal populations to mammalian locomotor behaviors. We show a discrete subset of commissural spinal interneurons, whose fate is controlled by the activity of the homeobox gene Dbx1, has a critical role in controlling the left-right alternation of motor neurons innervating hindlimb muscles. Dbx1 mutant mice lacking these ventral interneurons exhibit an increased incidence of cobursting between left and right flexor/extensor motor neurons during drug-induced locomotion. Together, these findings identify Dbx1-dependent interneurons as key components of the spinal locomotor circuits that control stepping movements in mammals.  相似文献   

8.
Regulation of energy metabolism is controlled by the brain, in which key central neuronal circuits process a variety of information reflecting nutritional state. Special sensory and gastrointestinal afferent neural signals, along with blood-borne metabolic signals, impinge on parallel central autonomic circuits located in the brainstem and hypothalamus to signal changes in metabolic balance. Specifically, neural and humoral signals converge on the brainstem vagal system and similar signals concentrate in the hypothalamus, with significant overlap between both sensory and motor components of each system and extensive cross-talk between the systems. This ultimately results in production of coordinated regulatory autonomic and neuroendocrine cues to maintain energy homeostasis. Therapeutic metabolic adjustments can be accomplished by modulating viscerosensory input or autonomic motor output, including altering parasympathetic circuitry related to GI, pancreas, and liver regulation. These alterations can include pharmacological manipulation, but surgical modification of neural signaling should also be considered. In addition, central control of visceral function is often compromised by diabetes mellitus, indicating that circuit modification should be studied in the context of its effect on neurons in the diabetic state. Diabetes has traditionally been handled as a peripheral metabolic disease, but the central nervous system plays a crucial role in regulating glucose homeostasis. This review focuses on key autonomic brain areas associated with management of energy homeostasis and functional changes in these areas associated with the development of diabetes.  相似文献   

9.
Rhythmic limb movements are controlled by pattern-generating neurons within the ventral spinal cord, but little is known about how these locomotor circuits are assembled during development. At early stages of embryogenesis, motor neurons are spontaneously active, releasing acetylcholine that triggers the depolarization of adjacent cells in the spinal cord. To investigate whether acetylcholine-driven activity is required for assembly of the central pattern-generating (CPG) circuit, we studied mice lacking the choline acetyltransferase (ChAT) enzyme. Our studies show that a rhythmically active spinal circuit forms in ChAT mutants, but the duration of each cycle period is elongated, and right-left and flexor-extensor coordination are abnormal. In contrast, blocking acetylcholine receptors after the locomotor network is wired does not affect right-left or flexor-extensor coordination. These findings suggest that the cholinergic neurotransmitter pathway is involved in configuring the CPG during a transient period of development.  相似文献   

10.
Optogenetics is the optical control of neuronal excitability by genetically delivered light-activated channels and pumps and represents a promising tool to fuel the study of circuit function in psychiatric animal models. This review highlights three developments. First, we examine the application of optogenetics in one of the neuromodulators central to the pathophysiology of many psychiatric disorders, the dopaminergic system. We then discuss recent work in translating functional magnetic resonance imaging in small animals (in which optogenetics can be employed to reveal physiological mechanisms underlying disease-related alterations in brain circuits) to patients. Finally, we describe emerging technological developments for circuit manipulation in freely behaving animals.  相似文献   

11.
For most aquatic vertebrates, axial movements play key roles in the performance of startle responses. In fishes, these axis-based startle behaviors fall into three distinct categories – the C-start, withdrawal, and S-start – defined by patterns of body bending and underlying motor control. Startle behaviors have been widely studied due to their importance for predator evasion. In addition, the neural circuits that control startles are relatively accessible, compared to other vertebrate circuits, and have provided opportunities to understand basic nervous system function. The C-start neural circuit has long been a model in systems neuroscience and considerable work on neural control of withdrawal response has been conducted in the larval lamprey. The S-start response has only recently been explored from a physiological perspective and we focus here on reviewing S-start motor control and movement in the context of the other two responses. Axial elongation has previously been associated with startle behavior in comparisons of C-starts and withdrawal, with extremely elongate animals performing withdrawals. We suggest that the S-start tends to occur with moderate body elongation, complementing the C-start in animals with this body form. As many larval fishes are moderately elongate, we suggest that the S-start may be common in larvae but may be secondarily lost with body shape change through development.  相似文献   

12.
Vertebrate animals exhibit impressive locomotor skills. These locomotor skills are due to the complex interactions between the environment, the musculo-skeletal system and the central nervous system, in particular the spinal locomotor circuits. We are interested in decoding these interactions in the salamander, a key animal from an evolutionary point of view. It exhibits both swimming and stepping gaits and is faced with the problem of producing efficient propulsive forces using the same musculo-skeletal system in two environments with significant physical differences in density, viscosity and gravitational load. Yet its nervous system remains comparatively simple. Our approach is based on a combination of neurophysiological experiments, numerical modeling at different levels of abstraction, and robotic validation using an amphibious salamander-like robot. This article reviews the current state of our knowledge on salamander locomotion control, and presents how our approach has allowed us to obtain a first conceptual model of the salamander spinal locomotor networks. The model suggests that the salamander locomotor circuit can be seen as a lamprey-like circuit controlling axial movements of the trunk and tail, extended by specialized oscillatory centers controlling limb movements. The interplay between the two types of circuits determines the mode of locomotion under the influence of sensory feedback and descending drive, with stepping gaits at low drive, and swimming at high drive.  相似文献   

13.
Tourette's syndrome (TS) is a neurodevelopmental disorder characterized by the presence of chronic vocal and motor tics. Tics are sudden, highly stereotyped, movements that can be simple or complex in appearance. Since patients with TS have difficulties preventing unwanted movements, one might expect that their ability to voluntarily control goal-directed movements would be similarly poor. Indeed, it has been suggested that TS sufferers are impaired at inhibiting reflexively triggered movements and in rapidly selecting or switching between different motor sets. This idea is consistent with current views on the neurological basis of TS that posit a dysfunction of the neural circuits linking the frontal lobes and the striatum. These circuits are known to be involved in the voluntary control of action. By using an oculomotor switching task, we show for the first time that young people with TS exhibit paradoxically greater levels of cognitive control over their movements than their age-matched controls. This finding is consistent with an increased need to monitor and control movements and may indicate a subcortical locus for the triggering of tics. It also suggests that the constant need to suppress tics could have resulted in an enhancement of the executive processes involved in inhibitory control.  相似文献   

14.
15.
There is growing recognition that rhythmic activity patterns are widespread in our brain and play an important role in all aspects of the functioning of our nervous system, from sensory integration to central processing and motor control. The study of the unique properties that enable central circuits to generate their rhythmic output in the absence of any patterned, sensory or descending, inputs, has been very rewarding in the relatively simple invertebrate preparations. The locust, specifically, is a remarkable example of an organism in which central pattern generator (CPG) networks have been suggested and studied in practically all aspects of their behaviour. Here we present an updated overview of the various rhythmic behaviours in the locust and aspects of their neural control. We focus on the fundamental concepts of multifunctional neuronal circuits, neural centre interactions and neuromodulation of CPG networks. We are certain that the very broad and solid knowledge base of locust rhythmic behaviour and pattern-generating circuits will continue to expand and further contribute to our understanding of the principles behind the functioning of the nervous system and, indeed, the brain.  相似文献   

16.
Neuronal circuits underlying rhythmic behaviors (central pattern generators: CPGs) can generate rhythmic motor output without sensory input. However, sensory input is pivotal for generating behaviorally relevant CPG output. Here we discuss recent work in the decapod crustacean stomatogastric nervous system (STNS) identifying cellular and synaptic mechanisms whereby sensory inputs select particular motor outputs from CPG circuits. This includes several examples in which sensory neurons regulate the impact of descending projection neurons on CPG circuits. This level of analysis is possible in the STNS due to the relatively unique access to identified circuit, projection, and sensory neurons. These studies are also revealing additional degrees of freedom in sensorimotor integration that underlie the extensive flexibility intrinsic to rhythmic motor systems.  相似文献   

17.
Motor pattern generation   总被引:1,自引:0,他引:1  
Recent work on the circuits that generate rhythmic movements illustrates the role of cotransmitter complement in motor pattern selection and demonstrates that many principles first established in invertebrates also hold in vertebrates. Major new areas of investigation include the development of central pattern generating networks, and the use of mouse mutants.  相似文献   

18.
Vago-vagal reflex circuits in the medulla are responsible for the smooth coordination of the digestive processes carried out from the oral cavity to the transverse colon. In this themes article, we concentrate mostly on electrophysiological studies concerning the extrinsic modulation of these vago-vagal reflex circuits, with a particular emphasis on two types of modulation, i.e., by "fast" classic neurotransmitters and by "slow" neuromodulators. These examples review two of the most potent modulatory processes at work within the dorsal vagal complex, which have dramatic effects on gastrointestinal function. The reader should be mindful of the fact that many more different inputs from other central nervous system (CNS) loci or circulating humoral factors add to this complex mix of modulatory inputs. It is likely that similar long-term modulations of synaptic transmission occur with other neurotransmitters and may represent an important mechanism for the integration and regulation of neuronal behavior. Of course, this fact strongly militates against the success of any single drug or approach in the treatment of motility disorders having a CNS component.  相似文献   

19.
Kawano T  Po MD  Gao S  Leung G  Ryu WS  Zhen M 《Neuron》2011,72(4):572-586
A neural network can sustain and switch between different activity patterns to execute multiple behaviors. By monitoring the decision making for directional locomotion through motor circuit calcium imaging in?behaving Caenorhabditis elegans (C.?elegans), we reveal that C.?elegans determines the directionality of movements by establishing an imbalanced output between the forward and backward motor circuits and that it alters directions by switching between these imbalanced states. We further demonstrate that premotor interneurons modulate endogenous motoneuron activity to establish the output imbalance. Specifically, the UNC-7 and UNC-9 innexin-dependent premotor interneuron-motoneuron coupling prevents a balanced output state that leads to movements without directionality. Moreover, they act as shunts to decrease the backward-circuit activity, establishing a persistent bias for the high forward-circuit output state that results in the inherent preference of C.?elegans for forward locomotion. This study demonstrates that imbalanced motoneuron activity underlies directional movement and establishes gap junctions as critical modulators of the properties and outputs of neural circuits.  相似文献   

20.
《Fly》2013,7(3):209-211
A central goal of systems neuroscience is to understand how neural circuits represent quantitative aspects of the outside world and transform these signals into the motor code for behavior. By contrast to olfactory perception in which odors are encoded by a population of ligand-binding receptors at the input stage, the visual system extracts complex information about color, form and movement from just a few types of photoreceptor inputs. The algorithms for many of these transformations are poorly understood. We designed a high throughput real-time quantitative testing system, the "fly-stampede", to evaluate behavioral responses to light and motion cues in Drosophila. With this system, we identified a neural circuit that does not participate in sensing light but is crucial for computing visual motion. When neurons of this circuit are genetically inactivated, the flies show normal walking phototaxis, but are completely motion blind. Using neurogenetics to study the circuits mediating sophisticated animal behaviors is currently a field of intense study. This extra view attempts to summarize our work within historical background of fly biocybernetics and other recent advances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号