首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Tyrosine-specific phosphorylation of the receptor for epidermal growth factor (EGF) in plasma membranes isolated from WI-38 cells is EGF-dependent and occurs to an equivalent extent and on identical tryptic peptides in preparations from cells of various in vitro ages. There is a marked reduction, however, in phosphorylation of receptor molecules from senescent as compared with young WI-38 cells, if enzyme activity is assayed in an immune complex following solubilization of plasma membranes with Nonidet P-40 (NP-40). Differences in the level of receptor phosphorylation in young vs. senescent NP-40 extracts are not resolved by changing the temperature at which the assay is performed, or the length of incubation. Moreover, addition of NP-40 or chloroform-methanol extracts of young cells to assays measuring receptor phosphorylation in senescent cell NP-40 preparations does not augment the senescent enzyme activity. The immunopurified senescent receptor is, however, capable of catalyzing phosphorylation of exogenous substrates. These results indicate that the loss of receptor autophosphorylation in solubilized preparations may result from a differential sensitivity of the senescent cell receptor to the detergent. This finding provides a marker for senescence and suggests subtle changes in protein structure, conformation, or regulation of the EGF receptor in senescent cells.  相似文献   

2.
WI-38 cells of various ages and SV40-transformed WI-38 cells were examined for differences in plasma membrane composition of glycoproteins and DNA synthesis. Sialic acid per milligram of protein content of the membranes of WI-38 cells decreased with passage of time in culture. Other glycoprotein fractions and alkaline phosphatase activity disappeared in the WI-38 cells with passage of time in culture (Phase III). Studies of DNA repair correlated with changes observed in the plasma membrane glycoprotein content of WI-38 cells over a passage of time in culture were also reported. Both the extent and rate of ultraviolet-induced unscheduled DNA synthesis remained relatively constant during the passage of the WI-38 cells until late phase III. At that time the extent of unscheduled DNA synthesis was measurably reduced. The number of cells in a population of phase III cells able to perform semiconservative DNA synthesis diminished with age in culture but not to an extent capable of explaining the observed changes seen in membrane composition of semiconservative DNA synthesis during passage of the cells in culture. Cells with an extended lifespan SV40-transformed WI-38 (VA 13.2 RA) cells, did not vary in membrane composition, semiconservative DNA synthesis, or unscheduled DNA synthesis over 200 serial subpassages of the cells in culture.  相似文献   

3.
Bromodeoxyuridine-selected nondividing senescent WI-38 cells were stimulated to synthesize DNA, as evidenced by incorporation of [3H]thymidine into nuclei of senescent cells, after infection with simian virus 40 (SV40). Cellular DNA synthesis was confirmed by DNA-DNA hybridization experiments and the use of temperature-sensitive A gene mutants. The DNA synthesis was, at least in part, semiconservative, as microdensitometry of Feulgen-stained nuclei revealed increased DNA content in a large fraction of the cells in the infected population. Thus, senescent cells retain the capacity to replicate their DNA, despite their intrinsic inability to initiate DNA synthesis.  相似文献   

4.
The effects of the tumor promoter phorbol 12-myristate 13-acetate (PMA) on the proliferation, protein kinase C activity (PKC), and c-fos gene expression were examined in cultures of young and senescent (90-95% lifespan completed) WI-38 human diploid fibroblasts. We observed that, following stimulation with medium containing 10% fetal bovine serum (FBS), the translocation of PKC from the cytosol to the particulate compartment was less efficient in senescent WI-38 cells than in young cells. However, when PMA was added to the medium, the intracellular distribution of PKC activity in old cells became nearly identical to that observed in young cells. The inducibility of c-fos mRNA by serum addition, which is a protein kinase C-dependent event [64], was significantly amplified in the presence of PMA. Moreover, the duration of peak c-fos expression, after stimulation by FBS and PMA, increased in senescent cells as compared to young cells. Our results reveal that the normal signal transduction pathway is altered in senescent, slowly proliferating human fibroblasts and that it can be partially restored in the presence of the tumor promoter PMA.  相似文献   

5.
Unraveling the mechanisms underlying cellular senescence will contribute to the understanding of processes involved in aging and cancer. We sought to determine whether expression of cellular factors in senescent WI-38 human fibroblasts was sufficient to induce nuclear DNA synthesis. Expression by recombinant adenovirus of E2F1, E2F2, E2F3, cyclin E/cdk2, and Mdm2 individually resulted in DNA synthesis in 10-30% of cells. However, combination of Mdm2 with E2F or cyclin E/cdk2 resulted in 50 to 75% of cells synthesizing DNA. DNA synthesis occurred approximately 30 h following infection. We conclude that expression of normal cellular factors is sufficient to induce DNA synthesis in senescent normal human fibroblasts.  相似文献   

6.
7.
Previous work from this laboratory (Rovera and Baserga, 1971) has shown that, when density-inhibited WI-38 human diploid fibroblasts are stimulated to proliferate by a change of medium, the synthesis of nuclear acidic proteins increases within 30 minutes after stimulation; several hours before DNA synthesis begins to increase. Similar results have now been obtained with density-inhibited 3T6 mouse fibroblasts, also stimulated by a change of medium. Gel electrophoretic analysis of nuclear acidic proteins in both WI-38 human diploid fibroblasts and 3T6 mouse fibroblasts stimulated to proliferate indicates that the increased synthesis of nuclear acidic proteins is limited to certain classes of proteins while other classes are totally unaffected. The increase in nuclear acidic proteins synthesis is inhibited when WI-38 cells or 3T6 cells are stimulated in the presence of 5-azacytidine (10 μg/ml), a treatment which also inhibits the subsequent stimulation of DNA synthesis. These results, confirming and extending similar findings previously reported in other models of stimulated DNA synthesis, lend further support to the hypothesis that nuclear acidic proteins may play a critical role in the control of DNA synthesis and cell division in mammalian cells.  相似文献   

8.
The activation of prolyl hydroxylase and lysyl hydroxylase by ascorbate was studied in young and senescent WI-38 fibroblast cultures using a tritium-release assay. Prolyl hydroxylase activity could be increased 3–4 fold in young cultures but remained unchanged in senescent cultures when these cultures underwent a two-hour preincubation in medium containing 0.2mM sodium ascorbate. Lysyl hydroxylase levels were unaffected both in young and senescent cultures. In another series of experiments, ascorbate was replaced with several other compounds in the tritium-release assay demonstrating that this reducing agent is not a specific cofactor of the partially purified enzymes from WI-38 cultures.  相似文献   

9.
As normal human cells approach the end of their proliferative lifespan in vitro they lose responsiveness to a variety of growth factors, to which they respond with DNA replication when they are young. Recently it has been reported that the protooncogene c-fos is not expressed in senescent cells (Seshadri and Campisi, 1990). In this study we have found that both c-jun and jun B, partners of c-fos in heterodimeric transactivating complexes, are equivalently expressed in young and senescent cells at both early (1-6 hr) and late (12 or 16 hr) time points following serum stimulation of quiescent cells. We have also investigated the effect of the enforced expression of c-fos in senescent WI-38 cells using an inducible construct carrying the murine c-fos gene under the control of the sheep metallothionein promoter. We have found that the transient transfection and subsequent activation of the conditional promoter with Zn++ stimulated DNA synthesis in a significant fraction of senescent cells which had completed 90%-95% of their proliferative lifespan. However, populations which had completed 100% of their proliferative life span and nondividing cultures which had been selected with BrdU did not respond to the expression of the c-fos gene. These results demonstrate that one of the primary events associated with senescence in human cells is the suppression of c-fos gene expression, but additional phenotypic changes must also occur in order to explain the ultimate loss of proliferative responsiveness of these cells.  相似文献   

10.
Normal human diploid fibroblasts undergo a finite number of doublings in culture. This process of senescence is accompanied by a loss in the ability to respond to proliferative stimuli and is therefore distinct from the quiescent state induced by nutrient deprivation. We have studied changes in gene expression induced in these cells following exposure to the cytokine, tumor necrosis factor-α (TNF). We observed that TNF induced CDC2 and CDK2 expression in early-passage quiescent WI-38 fibroblasts. However, as cells approached senescence, their ability to induce CDC2 and CDK2, as well as stimulate DNA synthesis in response to TNF, progressively declined, with minimal to absent induction in senescent cells. This occurred despite the TNF-dependent induction of such proliferation-independent genes as manganese superoxide dismutase and interleukin-6 in senescent and quiescent cells. Serum was similarly unable to induce CDC2 or CDK2 expression in senescent cells. These results demonstrate that senescent cells are selectively deficient in TNF-mediated induction of CDC2 and CDK2, genes crucial to DNA synthesis and mitosis.  相似文献   

11.
When resting confluent monolayers of WI-38 fibroblasts are stimulated to proliferate by serum, DNA synthesis begins to increase between 15-18 h after stimulation. Chromatin-bound protein kinase activity increases in stimulated cells within 1 h after the nutritional change, concomitant with an increase in the template activity of nuclear chromatin. Addition of dibutyryl 3' : 5'-cyclic adenosine monophosphate (dibutyryl cyclic) AMP to the stimulating medium inhibits the entrance of cells into S phase, but only if dibutyryl cyclic AMP (5-10(-4) M) is added before the onset of DNA synthesis. The increases in chromatin template activity and in the chromatin-bound kinase activity are not inhibited by dibutyryl cyclic AMP in the early hours after stimulation, but are completely inhibited after the 5th hour from the nutritional change. This seems to indicate that in stimulated WI-38 cells, dibutyryl cyclic AMP exerts its inhibitory action somewhere between 5 and 12 h after stimulation. A number of protein kinase activities were extracted from chromatin with 0.3 M NaCl and partially resolved on a phosphocellulose column. Two distinct peaks of protein kinase activity appeared to be markedly increased in WI-38 cells 6 h after serum stimulation. Both peaks of increased activity were inhibited by dibutyryl cyclic AMP in vivo. Adenosine, sodium butyrate and adenosine 5'-monophosphate (AMP) do not inhibit the increase in DNA synthesis nor the increase in protein kinase activity. The results suggest that stimulation of cell proliferation in confluent monolayers of WI-38 cells causes an increase (or the new appearance) of certain chromatin-bound protein kinases, and that this increase is inhibited by cyclic AMP in vivo.  相似文献   

12.
13.
Lithium interferes with the responses of neural and secretory cells to calcium-mobilizing agonists by blocking the generation of phospholipase C-dependent second messengers. However, the mechanism by which lithium stimulates the proliferation of other cells in response to agonists that do not activate phospholipase C remains obscure. We investigated the pathways that mediate the mitogenic action of lithium on WI-38 cells in a defined, serum-free medium. Lithium, like dexamethasone (Dex), potentiated DNA synthesis in response to the combination of insulin+epidermal growth factor (EGF) (+50%), but not in response to either growth factor alone or with Dex. As in the case of Dex, lithium could be added as late as 8 h following stimulation of quiescent cells by insulin+EGF without loss of potentiating activity. While DNA synthesis in control cultures was essentially complete by 24 h, lithium and Dex stimulated "late" DNA synthesis (24-30 h) 10-fold and 5-fold, respectively. The potentiating activity of Dex, but not that of lithium, was blocked by the specific glucocorticoid receptor antagonist, RU486. Both lithium and Dex stimulated log-phase growth, but only Dex increased saturation density. These data indicate that both lithium and Dex recruit into the cell cycle a subpopulation of cells with a longer mean prereplicative phase (G1). The effect of lithium on DNA synthesis in WI-38 cells may be mediated by the glucocorticoid response pathway at some point distal to activation of the glucocorticoid receptor, or by an independent mechanism that can be switched on late in G1.  相似文献   

14.
15.
Three mammalian cell lines (WI-38, SV40-transformed WI-38 and Chinese hamster ovary) were exposed to high doses of 137-Cs gamma rays and their DNA analysed, following various periods of postirradiation incubation, for products of the 5,6-dihydroxy-dihydrothymine type. Within fifteen minutes of incubation at 37 degrees C 70 to 90 percent of these radiation products were removed from acid-precipitable material in all three cell lines. The amount of DNA degradation induced by radiation varied from approximately one percent in WI-38 cells to 15 percent in SV40-transformed WI-38 cells. Comparison of DNA degradation with the amount of thymine radiation product removed indicates that a selective gamma ray-induced excision repair capability exists in mammalian cells. Because of its more rapid kinetics, gamma ray excision repair is probably a distinct process as compared with ultraviolet-induced pyrimidine dimer excision.  相似文献   

16.
Activities of three lysosomal enzymes--acid RNase. N-acetyl-beta-D-glucosaminidase and acid phosphatase--were determined during the growth cycles of WI-38 and HeLa cells, as well as in radiation-arrested WI-38 cells. In confluent and growth-arrested cultures of WI-38 cells, the lysosomal RNase increased six- to sevenfold; glucosaminidase, four- to fivefold; and phosphatase, two- to threefold. In HeLa cells, the lysosomal enzymes also increased in confluent cultures, but less than twofold; and the RNase level increased only transiently. In both WI-38 and HeLa cells, the rate of RNA breakdown also increased as cultures approached confluency. The rate of turnover of RNA, like the level of acid RNase, was higher in WI-38 cells than in HeLa cells (4 d half-life compared to 8 d). The increase in acid RNase could be prevented by incubation of cells in NH4Cl, but the rate of turnover in the presence of NH4Cl increased just as much when cells became confluent or stopped growth. The content of acid RNase could be changed more than 10-fold without altering the rate of RNA turnover. It is suggested that the increase in enzyme level is more important for possible autophagy or increased digestion of engulfed RNA, rather than for normal RNA turnover, when growth stops.  相似文献   

17.
The regulation of nucleotide excision repair and base excision repair by normal and repair deficient human cells was determined. Synchronous cultures of WI-38 normal diploid fibroblasts and Xeroderma pigmentosum fibroblasts (complementation group D) (XP-D) were used to investigate whether DNA repair pathways were modulated during the cell cycle. Two criteria were used: (1) unscheduled DNA synthesis (UDS) in the presence of hydroxyurea (HU) after exposure to UV light or after exposure to N-acetoxy-acetylaminofluorene (N-AcO-AAF) to quantitate nucleotide excision repair or UDS after exposure to methylmethane sulfonate (MMS) to measure base excision repair; (2) repair replication into parental DNA in the absence of HU after exposure to UV light. Nucleotide excision repair after UV irradiation was induced in WI-38 fibroblasts during the cell cycle reaching a maximum in cultures exposed 14–15 h after cell stimulation. Similar results were observed after exposure to N-AcO-AAF. DNA repair was increased 2–4-fold after UV exposure and was increased 3-fold after N-AcO-AAF exposure. In either instance nucleotide excision repair was sequentially stimulated prior to the enhancement of base excision repair which was stimulated prior to the induction of DNA replication. In contrast XP-D failed to induce nucleotide excision repair after UV irradiation at any interval in the cell cycle. However, base excision repair and DNA replication were stimulated comparable to that enhancement observed in WI-38 cells. The distinctive induction of nucleotide excision repair and base excision repair prior to the onset of DNA replication suggests that separate DNA repair complexes may be formed during the eucaryotic cell cycle.  相似文献   

18.
Synthesis of DNA-binding proteins during the cell cycle of WI-38 cells   总被引:1,自引:0,他引:1  
Synthesis of DNA-binding proteins was investigated in WI-38 human diploid fibroblast cultures after stimulation with serum containing medium. Density-inhibited confluent monolayers of young (phase II) and aging (phase III) WI-38 cells can be stimulated to synthesize DNA by replacing the medium with fresh medium containing 10% fetal calf serum. Of the phase II cells, 35–50% showed a partially synchronized burst of DNA-synthesizing activity between 15 and 24 h whereas only 4–6% of phase III cells showed DNA-synthesizing activity at 20 h, and that cell fraction was increasing even at 38 h. This suggests either an extremely prolonged G 1 in stimulated phase III cells, or a heterogeneity of the population (e.g., a mixed population of pre- and postmitotic cells) for phase III cells. At various times after the change of medium, DNA-binding protein synthesis was examined in these stimulated cultures. Protein of mol. wt 20 000–25 000 D accumulated rapidly during early G 1 and declined thereafter, whereas larger protein (40 000 and 68 000 D) accumulated during the late G 1 or G 1-S transition period indicating that accumulation of these proteins is associated with the onset of DNA synthesis in the serum-stimulated cells. In cultures where the DNA synthesis has been reduced or inhibited by an excess of thymidine, hydroxyurea or dibutyryl cAMP, the accumulation of the larger proteins (40 000 and 68 000 D) was neglible as compared with non-stimulated cultures. Hydrocortisone did not exert any effect on the DNA-binding protein synthesis in phase II cells. However, it seems to increase the cell fraction which can respond to the serum factor in phase III cells as evidenced from the pattern of DNA-binding proteins synthesis.  相似文献   

19.
Liver cells isolated from the adult rat livers under mild conditions were preincubated for 1 day with Williams medium E (WE) containing serum, dexamethasone and insulin, and then the cells (monolayered) were incubated for 2-3 days with WE (1 ml) containing only insulin to measure DNA synthesis and/or mitosis. DNA synthesis of cultured liver cells was dependent on cell densities within a region from 0.1 X 10(6) to 1.0 X 10(6) nuclei/dish (Falcon, diameter 35 mm). The addition of EGF from the beginning of preincubation stimulated DNA synthesis (or replication) as well as cell proliferation in vitro, but the density-dependent inhibition of DNA synthesis was observed similarly in the presence of EGF. In contrast to the low and high density cultures, DNA synthesis in the intermediary density cultures was enhanced by enlarging the medium volume or by adding ornithine (arginase inhibitor). DNA synthesis in low density cultures was inhibited by liver plasma membranes in a concentration-dependent fashion. The inhibition of DNA synthesis by liver plasma membranes in low concentrations (less than 30 micrograms protein/ml) was reduced by adding either extra arginine or ornithine. DNA synthesis of cultured liver cells (low density) was inhibited by replacing arginine in WE with equimolar ornithine and urea or by adding a commercial arginase (bovine liver). These, together with earlier findings indicating the presence of arginase in liver plasma membranes (outer leaflet), seem to support the idea that arginase may be involved in density-dependent as well as plasma membrane-mediated inhibition of DNA synthesis of cultured liver cells. However, this does not exclude possible involvement of other inhibitory principle(s), such as direct cell-to-cell or cell-to-plasma membrane interactions, especially in higher cell densities or larger plasma membrane concentrations.  相似文献   

20.
We have examined the ability of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) to stimulate cultures of young and senescent WI-38 cells to carry out tyrosine-specific phosphorylation of their respective membrane receptors. Previously we reported no reduction in EGF-stimulated phosphorylation in plasma membrane preparations of senescent cells. In this study we found no reduction in PDGF-stimulated phosphorylation in plasma membrane preparations from senescent cells. Furthermore, we found no differences in the EGF- or PDGF-stimulated phosphorylation of their respective receptors in intact cells. These data support the previous findings that although the EGF receptor autokinase activity becomes highly labile during extraction and immunoprecipitation of senescent cells, in situ loss of receptor tyrosine kinase activity is apparently not responsible for the age-associated loss of mitogenic responsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号