首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate the effects of troglitazone (TRO)--a new insulin-sensitizing agent--on some metabolic parameters in an experimental model of hypertriglyceridemia and insulin resistance, hereditary hypertriglyceridemic rats, and to compare its effects with those of vitamin E, an antioxidant agent. Three groups of the above rats were fed diets with a high content of sucrose (70% of energy as sucrose) for four weeks. The first group was supplemented with TRO (120 mg/kg diet), the second one with vitamin E (500 mg/kg diet), and the third group served as the control. Vitamin E supplementation did not lower serum triglycerides (2.42 +/- 0.41 vs. 3.39 +/- 0.37 mmol/l, N.S.) while TRO did (1.87 +/- 0.24 vs. 3.39 +/- 0.37 mmol/l, p < 0.01). Neither TRO nor vitamin E influenced the serum levels of free fatty acids (FFA). Both drugs influenced the spectrum of fatty acids in serum phospholipids--TRO increased the levels of polyunsaturated fatty acids (PUFA) n-6 (36.04 +/- 1.61 vs. 19.65 +/- 1.56 mol %, p < 0.001), vitamin E increased the levels of PUFA n-3 (13.3 +/- 0.87 vs. 6.79 +/- 0.87 mol %, p < 0.001) and decreased the levels of saturated fatty acids (32.97 +/- 0.58 vs. 51.45 +/- 4.01 mol %, p < 0.01). In conclusion, TRO lowered the level of serum triglycerides but vitamin E did not have this effect in hypertriglyceridemic rats. Compared with TRO, vitamin E had a different effect on the spectrum of fatty acids in serum phospholipids.  相似文献   

2.
Vitamin E treatment has been found to be beneficial in preventing or reducing diabetic nephropathy. Increased tissue calcium and abnormal microsomal Ca(2+)-ATPase activity have been suggested as contributing factors in the development of diabetic nephropathy. This study was undertaken to test the hypothesis that vitamin E reduces lipid peroxidation and can prevent the abnormalities in microsomal Ca(2+)-ATPase activity and calcium levels in kidney of streptozotocin (STZ)-induced diabetic rats. Male rats were rendered diabetic by a single STZ injection (55 mg x kg(-1) i.p.). After diabetes was verified, diabetic and age-matched control rats were untreated or treated with vitamin E (400-500 IU kg(-1) x day(-1), orally) for 10 weeks. Ca(2+)-ATPase activity and lipid peroxidation (MDA) were determined spectrophotometrically. Blood glucose levels increased approximately five-fold (> 500 mg x dl(-1)) in untreated-diabetic rats but decreased to 340+/-27 mg x dl(-1) in the vitamin E treated-diabetic group. Kidney MDA levels did not significantly change in the diabetic state. However, vitamin E treatment markedly inhibited MDA levels in both control and diabetic animals. Ca(2+)-ATPase activity was 0.483+/-0.008 U l(-1) in the control group and significantly increased to 0.754+/-0.010 U l(-1) in the STZ-diabetic group (p < 0.001). Vitamin E treatment completely prevented the diabetes-induced increase in Ca(2+)-ATPase activity (0.307+/-0.025 U l(-1), p < 0.001) and also reduced the enzyme activity in normal control rats. STZ-diabetes resulted in approximately two-fold increase in total calcium content of kidney. Vitamin E treatment led to a significant reduction in kidney calcium levels of both control and diabetic animals (p < 0.001). Thus, vitamin E treatment can lower blood glucose and lipid peroxidation, which in turn prevents the abnormalities in kidney calcium metabolism of diabetic rats. This study describes a potential biochemical mechanism by which vitamin E supplementation may delay or inhibit the development of cellular damage and nephropathy in diabetes.  相似文献   

3.
Cigarette smoking is associated with increased oxidative stress and increased risk of degenerative disease. As the major lipophilic antioxidant, requirements for vitamin E may be higher in smokers due to increased utilisation. In this observational study we have compared vitamin E status in smokers and non-smokers using a holistic approach by measuring plasma, erythrocyte, lymphocyte and platelet alpha- and gamma-tocopherol, as well as the specific urinary vitamin E metabolites alpha- and gamma-carboxyethyl-hydroxychroman (CEHC). Fifteen smokers (average age 27 years, smoking time 7.5 years) and non-smokers of comparable age, gender and body mass index (BMI) were recruited. Subjects completed a 7-day food diary and on the final day they provided a 24 h urine collection and a 20 ml blood sample for measurement of urinary vitamin E metabolites and total vitamin E in blood components, respectively. No significant differences were found between plasma and erythrocyte alpha- and gamma-tocopherol in smokers and non-smokers. However, smokers had significantly lower alpha-tocopherol (mean+/-SD, 1.34+/-0.31 micromol/g protein compared with 1.94+/-0.54, P = 0.001) and gamma-tocopherol (0.19+/-0.04 micromol/g protein compared with 0.26+/-0.08, P = 0.026) levels in their lymphocytes, as well as significantly lower alpha-tocopherol levels in platelets (1.09+/-0.49 micromol/g protein compared with 1.60+/-0.55, P = 0.014; gamma-tocopherol levels were similar). Interestingly smokers also had significantly higher excretion of the urinary gamma-tocopherol metabolite, gamma-CEHC (0.49+/-0.25mg/g creatinine compared with 0.32+/-0.16, P = 0.036) compared to non-smokers, while their alpha-CEHC (metabolite of alpha-tocopherol) levels were similar. There was no significant difference between plasma ascorbate, urate and F2-isoprostane levels. Therefore in this population of cigarette smokers (mean age 27 years, mean smoking duration 7.5 years), alterations to vitamin E status can be observed even without the more characteristic changes to ascorbate and F2-isoprostanes. We suggest that the measurement of lymphocyte and platelet vitamin E may represent a valuable biomarker of vitamin E status in relation to oxidative stress conditions.  相似文献   

4.
Seven trained male cyclists (ate 22.3 +/- 2 years) participated in 4 separate supplementation phases. They ingested 2 capsules per day containing the following treatments: placebo (placebo plus placebo); vitamin C (1 g per day vitamin C plus placebo); vitamin C and E (1 g per day vitamin C plus 200 IU per kg vitamin E); and vitamin E (400 IU per kg vitamin E plus placebo). The treatment order (placebo, vitamin C, vitamin C and E, and vitamin E) was the same for all subjects. Performance trials consisting of a 60-minute steady state ride (SSR) and a 30-minute performance ride (PR) on Cybex 100 Metabolic cycles were performed after each trial. Workloads of 70% of the VO2max were set for the SSR and PR rides, with pedal rate maintained at 90 rpm (SSR) or self determined (PR). Blood samples (5 ml) were drawn pre- and postexercise and analyzed for malonaldehyde (MDA) and lactic acid. The results indicate that vitamin E treatment was more effective than vitamin C alone or vitamin C and E. Pre-exercise plasma levels of MDA in the vitamin E trial was 39% below the pre-exercise MDA levels of the placebo: 2.94 +/- 0.54 and 4.81 +/- 0.65 micromol per ml, respectively. Plasma MDA following exercise in the vitamin E group was also lower than teh placebo: 4.32 +/- 0.37 vs 7.89 +/- 1.0 micromol per ml, respectively. Vitamin C supplementation, on the other hand, elevated both the resting and exercise plasma levels of MDA. None of th supplemental phases had any significant effect on performance. In conclusion, the results indicate that 400 IU/day of vitamin E reduces membrane damage more effectively than vitamin C but does not enhance performance. Athletes are encouraged to include antioxidants, such as vitamin E and C, in their diet to counteract these detrimental effects of exercise. The data presented here suggests that 400 IU/day of vitamin E will provide adequate protection but supplementing the diet with 1 g per day of vitamin C may promote cellular damage. However neither of these vitamins, either alone or in combination, will enhance exercise performance.  相似文献   

5.
In vitro tocotrienols (T3s) have potent vitamin E antioxidant activity, but unlike tocopherols can inhibit cholesterol synthesis by suppressing 3-hydroxy-3-methyl-glutarylCoA (HMG-CoA) reductase. Because hypercholesterolemia is a major risk factor for coronary artery disease and oxidative modification of low-density lipoprotein (LDL) may be involved in atherogenesis, we investigated whether daily supplements of placebo, or alpha-, gamma-, or delta- (alpha-, gamma-, or delta-) tocotrienyl acetates would alter serum cholesterol or LDL oxidative resistance in hypercholesterolemics in a double-blind placebo controlled study. Subjects were randomly assigned to receive placebo (n = 13), alpha- (n = 13), gamma- (n = 12), or delta- (n = 13) tocotrienyl acetate supplements (250 mg/d). All subjects followed a low-fat diet for 4 weeks, then took supplements with dinner for the following 8 weeks while still continuing diet restrictions. Plasma alpha- and gamma-tocopherols were unchanged by supplementation. Plasma T3s were undetectable initially and always in the placebo group. Following supplementation in the respective groups plasma concentrations were: alpha-T3 0.98 +/- 0.80 micromol/l, gamma-T3 0.54 +/- 0.45 micromol/l, and delta-T3 0.09 +/- 0.07 micromol/l. Alpha-T3 increased in vitro LDL oxidative resistance (+22%, p <.001) and decreased its rate of oxidation (p <. 01). Neither serum or LDL cholesterol nor apolipoprotein B were significantly decreased by tocotrienyl acetate supplements. This study demonstrates that: (i) tocotrienyl acetate supplements are hydrolyzed, absorbed, and detectable in human plasma; (ii) tocotrienyl acetate supplements do not lower cholesterol in hypercholesterolemic subjects on low-fat diets; and (iii) alpha-T3 may be potent in decreasing LDL oxidizability.  相似文献   

6.
It has been suggested that cyclosporin A (CsA) nephrotoxicity can be reduced by the concomitant administration of omega-3 fatty acids or vitamin E. The present study was designed to establish whether the effect of the above substances can also be demonstrated in rats with hereditary hypertriglyceridemia (HTG) whose sensitivity to the nephrotoxic effect is greater than in control AVN rats. CsA administration at a dose of 10 mg/kg/day to HTG rats resulted in a significant rise (p<0.001) in serum levels of creatinine (from 66.0+/-7.6 to 108.4+/-11.6 micromol/l) and urea (from 8.3+/-0.7 to 22.3+/-18 mmol/l) which was not found in AVN rats. The baseline values of systolic blood pressure (SBP) were significantly higher in HTG rats. However, in both strains CsA administration was associated with a similar SBP increase which was not prevented by omega-3 fatty acids (EPAX) or vitamin E administration. Concomitant administration of CsA with EPAX at a dose of 600 mg/kg b.w./day in HTG rats prevented the rise in the serum levels of creatinine (65.4+/-14.7 micromol/l) and reduced the increase in the serum urea levels (11.9+/-7.6 mmol/l). Concomitant administration of CsA and vitamin E (at a dose of 25 mg/kg/day) also reduced the increase (p<0.05) in the serum levels of creatinine (70.7+/-14.3 micromol/l) and urea (9.8+/-3.4 mmol/l) compared to the effects elicited by the administration of CsA alone (p<0.05). Administration of CsA alone or in combination with EPAX or vitamin E did not have a marked effect on diuresis, proteinuria, urinary osmolality, urinary excretion of urea, creatinine and potassium. Under all experimental conditions, the rate of urinary excretion of sodium in HTG rats was significantly lower (p<0.01) than in AVN rats. The results obtained support the assumption that omega-3 fatty acids and vitamin E at the doses used reduce CsA nephrotoxicity in rats with hereditary hypertriglyceridemia whose sensitivity to the nephrotoxic effect of CsA is significantly higher than in AVN rats.  相似文献   

7.
Hyperglycemia causes protein glycosylation, oxidation and alterations in enzyme activities, which are the underlying causes of diabetic complications. This study was undertaken to test the role of vitamin E treatment on Ca2+-ATPase activity, protein glycosylation and lipid peroxidation in the brain of streptozotocin (STZ)-induced diabetic rats. Male rats weighing about 250-300 g were rendered diabetic by a single STZ injection of 50 mg/kg via the tail vein. Both the diabetic and non-diabetic rats were fed a vitamin E supplemented diet (500 IU/kg/day). Ca2+-ATPase activity was significantly reduced at week 10 of diabetes compared to the control group (p < 0.05), with 0.225+/-0.021 U/I (mean +/- S.E.M.) in the control group and 0.072 +/- 0.008 U/l (mean +/- S.E.M.) in the diabetic group. Vitamin E treatment prevented the enzyme activity from decreasing. The activities observed were 0.226 +/- 0.020 U/l and 0.172 +/- 0.011 U/I (mean +/- S.E.M.) in the vitamin E-treated control and diabetic group, respectively. STZ-induced diabetes resulted in an increased protein glycosylation and lipid peroxidation. Vitamin E treatment led to a significant inhibition in blood glucose, protein glycosylation and lipid peroxidation, which in turn prevented abnormal activity of the enzyme in the brain. This study indicates that vitamin E supplementation may reduce complications of diabetes in the brain.  相似文献   

8.
Plasma C-reactive protein (CRP) is an inflammatory biomarker that predicts cardiovascular disease. Lowering elevated CRP with statins has reduced the incidence of cardiovascular disease. We investigated whether vitamin C or E could reduce CRP. Healthy nonsmokers (N=396) were randomized to three groups, 1000 mg/day vitamin C, 800 IU/day vitamin E, or placebo, for 2 months. Median baseline CRP was low, 0.85 mg/L. No treatment effect was seen when all participants were included. However, a significant interaction was found, indicating that treatment effect depends on baseline CRP concentration. Among participants with CRP indicative of elevated cardiovascular risk (> or =1.0 mg/L), vitamin C reduced the median CRP by 25.3% vs placebo (p=0.02) (median reduction in the vitamin C group, 0.25 mg/L, 16.7%). These effects are similar to those of statins. The vitamin E effect was not significant. In summary, treatment with vitamin C but not vitamin E significantly reduced CRP among individuals with CRP > or =1.0 mg/L. Among the obese, 75% had CRP > or =1.0 mg/L. Research is needed to determine whether reducing this inflammatory biomarker with vitamin C could reduce diseases associated with obesity. But research on clinical benefits of antioxidants should limit participants to persons with elevations in the target biomarkers.  相似文献   

9.
INTRODUCTION: The aim of this study was to analyze the influence of DHEA therapy on fibrinogen, plasminogen activator inhibitor-1 (PAI-1) and tissue plasminogen activator (tPA) plasma concentrations in men with decreased serum DHEA-S levels and angiographically verified coronary heart disease (CHD). MATERIAL AND METHODS: The study included thirty men aged 41-60 years (mean age 52 +/- 0.90 yr) with serum DHEA-S concentration < 2000 mg/l, who were randomized into a double-blind, placebo-controlled, cross-over trial. Subjects completed the 80 days study of 40 days of 150 mg oral DHEA daily or placebo, and next groups were changed after 30 days of wash-out. Fasting early morning blood samples were obtained at baseline and after each treatment to determine serum hormones levels (testosterone, DHEA-S, LH, FSH and estradiol) and also fibrinogen, plasminogen activator inhibitor-1 (PAI-1) and tissue plasminogen activator (tPA) plasma concentrations. RESULTS: Administration of DHEA was associated with 4.5-fold increase in DHEA-S levels. Estrogen levels significantly increased after DHEA from 22.1 +/- 0.7 pg/ml to 26.4 +/- 1.6 pg/l (mean +/- SEM; p < 0.05), while testosterone levels did not changed. Fibrinogen concentrations significantly decreased in DHEA group from 4.5 +/- 0.3 g/l to 3.83 +/- 0.2 g/l (p < 0.05 vs. placebo). Changes of tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) were not statistical significant (respectively: 8.37 +/- 0.4 ng/ml vs. 8.93 +/- 0.5 ng/ml and 82.3 +/- 6.3 ng/ml vs. 92.7 +/- 9.1 ng/ml (mean +/- SEM; NS vs. placebo). Tolerance of the treatment was good and no adverse effects were observed. CONCLUSIONS: DHEA therapy in dose of 150 mg daily during 40 days in men with DHEAS levels < 2000 mg/l and angiographically verified coronary heart disease (CHD) was connected with significant decreasing of fibrinogen concentration and increasing of estradiol levels, and did not influence on plasminogen activator inhibitor-1 (PAI-1) and tissue plasminogen activator (tPA) plasma concentrations.  相似文献   

10.
Increased oxidative stress is believed to be an important factor in the development of diabetic complications. In this study, the effect of diabetes on the susceptibility of synaptosomes to oxidative stress, induced by the oxidizing system ascorbate/Fe2+, on the activity of antioxidant enzymes and on the levels of glutathione and vitamin E was investigated. Synaptosomes were isolated from brain of 29-weeks-old Goto-Kakizaki (GK) rats, a model of non-insulin dependent diabetes mellitus and from normal Wistar rats. Synaptosomes isolated from GK rats displayed a lower susceptibility to lipid peroxidation, as assessed by quantifying thiobarbituric acid reactive substances (TBARS), than normal rats (5.33 +/- 0.79 and 7.58 +/- 0.7 nmol TBARS/mg protein, respectively). In the absence of oxidants, no significant differences were found between the levels of peroxidation in synaptosomes of diabetic or control rats. Superoxide dismutase (SOD), glutathione peroxidase and glutathione reductase activities were unaltered in the brain of diabetic rats. There were no statistically significant differences in fatty acid composition of total lipids and reduced glutathione levels in synaptosomes of diabetic and control rats. The decreased susceptibility to membrane lipid peroxidation of diabetic rats synaptosomes correlated with a 1.3-fold increase in synaptosomal vitamin E levels. Vitamin E levels in plasma were also higher in diabetic rats (21.32 micromol/l) as compared to normal rats (15.13 micromol/l). We conclude that the increased resistance to lipid peroxidation in GK rat brain synaptosomes may be due to the increased vitamin E content, suggesting that diabetic animals might develop enhanced defense systems against brain oxidative stress.  相似文献   

11.
Peker S  Abacioglu U  Sun I  Konya D  Yüksel M  Pamir NM 《Life sciences》2004,75(12):1523-1530
This study investigated the neuroprotective effects of magnesium sulfate prophylaxis and vitamin E prophylaxis in a rat model of spinal cord radiation injury. Groups were subjected to different treatment conditions for 5 days prior to irradiation, and outcomes were evaluated on the basis of lipid peroxidation levels in cord tissue. Four groups of rats were investigated: no radiation/treatment (n = 4), intraperitoneal (i.p.) saline 1 ml/day (n = 6), i.p. vitamin E 100 mg/kg/day (n = 6), and i.p. magnesium sulfate 600 mg/kg/day (n = 6). The thoracic cord of each non-control rat was exposed to 20 Gy radiation in a LINAC system using 6 MV x-rays, and malondialdehyde (MDA) levels (reflecting lipid peroxidation level) were determined 24 hours post-irradiation. The MDA levels in thoracic cord segments from the control rats were used to determine baseline lipid peroxidation. The mean levels in the control, saline-only, vitamin E, and magnesium sulfate groups were 12.12 +/- 0.63, 27.0 +/- 2.81, 17.71 +/- 0.44, and 14.40 +/- 0.47 nmol/mg tissue, respectively. The MDA levels in the saline-only group were significantly higher than baseline, and the levels in the vitamin E group were significantly lower than those in the saline group (P < 0.05 for both). The levels in the magnesium sulfate group were dramatically lower than those in the saline group (P < 0.001). The results indicate that i.p. magnesium sulfate has a marked neuroprotective effect against radiation-induced oxidative stress in the rat spinal cord.  相似文献   

12.
OBJECTIVE: To test whether oxidative stress could promote a systemic acute-phase response in elderly patients with type II diabetes. DESIGN AND METHODS: In a group of 30 older diabetic patients with poor glycemic control, serum levels of lipid peroxides, measured as thiobarbituric acid-reacting substances (TBARS); C-reactive protein (CRP); interleukin (IL)-6 and the soluble form of its receptor (slL-6R), were evaluated at baseline and after 2 and 3 months of therapeutic intervention. Thirty asymptomatic, untreated individuals with abnormal fasting glycemia, but otherwise healthy status, of similar age, sex, and weight served as control group. RESULTS: At baseline, glycemia (8.83 +/- 0.67mmol/l), HbA1C (8.66 +/- 0.59%), TBARS (8.68 +/- 1.21 micromol/l), CRP (16.05 +/- 3.81 mg/l) IL-6 (5.39 +/- 1.25 pg/ml) and sIL-6R (1425 +/- 492 pg/ml) were significantly higher in diabetic patients than in asymptomatic hyperglycemic individuals (p<0.001). After treatment, glycemia significantly decreased with respect to baseline values (- 9.82% after 60 days and -13.74% after 90 days), as did serum levels of TBARS (-14.05% and -21.89%, respectively), CRP (-32.71% and -43.86%), IL-6 (-23.75% and -40.63%) and sIL-6R (-34.53% and -48.49%, respectively). In diabetic patients, multiple regression showed, at each time, that TBARS and IL-6 were independently correlated with CRP, considering CRP as the dependent variable. Similar correlations were found in asymptomatic hyperglycemic subjects. CONCLUSION: These results suggest that oxidative stress might be implicated in promoting a state of low-grade systemic inflammation in elderly patients with type II diabetes.  相似文献   

13.
Does cigarette smoking increase vitamin E utilization in vivo? A trial was carried out in 6 smokers and 5 nonsmokers of comparable ages and serum lipids. Subjects consumed 75 mg each d(3)-RRR and d(6)-all rac-alpha-tocopheryl acetates (natural and synthetic vitamin E, respectively) daily for 7 d with a standardized breakfast. Fasting blood samples were drawn on days -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 14, 21 (negative days indicate supplementation). In both groups, plasma d(3)-alpha-tocopherol concentrations were approximately double of d(6)-alpha-tocopherol. At day 0, the %d(3) alpha-tocopherols (d(3)-alpha-tocopherol/total-alpha-tocopherol x 100) were similar in both smokers and nonsmokers. Subsequently, there was a trend toward a faster exponential disappearance of the plasma %d(3) alpha-tocopherol in smokers compared with nonsmokers (0.30 +/- 0.04 compared with 0.24 +/- 0.05, p =.0565). The calculated %d(3) half-lives were 55.6 +/- 7.4 h in smokers and 72.1 +/- 17.3 h in nonsmokers (p =.0630). By day 21, the %d(3) in smokers had decreased to 1.4% +/- 0.3% while it was 2.2% +/- 0.7% (p =.0418) in the nonsmokers. These data suggest that smoking increases plasma vitamin E disappearance, but further studies are needed to confirm this finding and to assess its cause.  相似文献   

14.
This study investigated the supplementation with vitamin C or/and E on the antioxidant system in hemodialysis patients. Thirty-eight hemodialysis patients (27 males and 11 females) with the average of 60 years old were divided into four groups: placebo (400 mg starch/time), vitamin C (400 mg/time)-, vitamin E (400 mg d,l- alpha-tocopheryl acetate/time)-, and vitamin C (400 mg/time) + E (400 mg d,l- alpha-tocopheryl acetate/time)-supplemented groups for 6-week supplementation. The patients orally received three capsules of placebo or antioxidant(s) three times a week after finishing hemodialysis. Thirty-six healthy subjects (22 males and 14 females) with the average of 58 years old were recruited as the control group. Hemodialysis patients significantly decreased plasma vitamin C by 32%, erythrocyte glutathione by 26%, and plasma total antioxidant status by 9%, but increased plasma lipid peroxide levels by 102% compared with the control group at the baseline. The levels of plasma vitamin C and total antioxidant status significantly decreased by 24% and 18%, respectively, from the post-dialysate compared with those from the pre-dialysate. At week 6, vitamin C + E-supplemented group significantly increased plasma vitamin C and E, erythrocyte glutathione, and plasma antioxidant status, and inhibited plasma lipid peroxides compared with placebo group. Additionally, vitamin C + E-supplemented group had higher plasma vitamin C, vitamin E, and total antioxidant status, and lower plasma lipid peroxides than placebo group even at least 2 weeks after the termination of the supplements. Therefore, antioxidant vitamin supplements could improve antioxidant status and decrease lipid peroxides of hemodialysis patients.  相似文献   

15.
BACKGROUND: Matrix metalloproteinases (MMPs) have been implicated in the pathogenesis of arterial aneurysms through increased proteolysis of extracellular matrix proteins. Increased proteolysis due to elevated matrix degrading enzyme activity in the arterial wall may act as a susceptibility factor for the development of coronary aneurysms. The aim of this study was to investigate the association between MMPs and presence of coronary aneurysms. METHODS: Thirty patients with aneurysmal coronary artery disease and stable angina were enrolled into study (Group 1). Fourteen coronary artery disease patients with stable angina were selected as control group (Group 2). MMP-1, MMP-3 and C-reactive protein (CRP) were measured in peripheral venous blood and matched between the groups. RESULTS: Serum MMP-3 level was higher in patients with aneurismal coronary artery disease compared to the control group (20.23 +/- 14.68 vs 11.45 +/- 6.55 ng/ml, p = 0.039). Serum MMP-1 (13.63 +/- 7.73 vs 12.15 +/- 6.27 ng/ml, p = 0.52) and CRP levels (4.78 +/- 1.47 vs 4.05 +/- 1.53 mg/l, p = 0.13) were not significantly different between the groups. CONCLUSION: MMPs can cause arterial wall destruction. MMP-3 may play role in the pathogenesis of coronary aneurysm development through increased proteolysis of extracellular matrix proteins.  相似文献   

16.
Chronic obstructive pulmonary disease (COPD) is highly prevalent and its pathogenesis is still not completely clarified. Clinically stable patients (n=21) and healthy subjects (n=24) were studied for blood markers of oxidative injury and antioxidant status. The plasma concentration of protein carbonyls was significantly increased in COPD patients, both ex-smokers (0.76 +/- 0.28 nmol mg(-1)) and smokers (0.99 +/- 020 nmol mg(-1)) versus controls (0.49 +/- 0.14 nmol mg(-1)) . The concentration of total thiols was slightly enhanced in plasma of the COPD patients (ex-smokers 492 +/- 23 micromol 1(-1) and smokers 505 +/- 36 micromol 1(-1) versus controls 450 +/- 67 micromol 1(-1); p < 0.05). The activity of the antioxidant enzyme superoxide dismutase was increased in erythrocytes (activity in U g(-1) haemoglobin; ex-smokers 4460 +/- 763 and smokers 4114+/- 1060 versus 3015 +/- 851 in controls; p > 0.01), while glutathione peroxidase activity was decreased in total blood (activity in U g(-1) haemoglobin: ex-smokers 27 +/- 9 and smokers 23 +/- 9 versus 47 +/- 25; p < 0.01). Lower levels of selenium in plasma were also found for COPD patients (concentration in mg 1(-1): ex-smokers 0.030 +/- 0.019 and smokers 0.032 +/- 0.024 versus 0.058 +/- 0.023 in controls; p < 0.01), being more evident in those with very low levels of arterial oxygen pressure. In addition, the levels of potassium and rubidium were increased in blood cells of the patient group. All these changes might reflect oxidant damage and an altered electrolytic homeostasis, and can be interpreted as markers of COPD rather than as indicators of smoking habits.  相似文献   

17.
C-reactive protein levels are influenced by common IL-1 gene variations   总被引:15,自引:0,他引:15  
Elevated markers of systemic inflammation are associated with the development of acute coronary syndromes, but there is no current explanation for increased inflammation in overtly healthy individuals. The influence of genetic control of the inflammatory response on the observed variability is unknown. We studied the frequency of four polymorphisms in interleukin (IL) 1 genes, known to modulate inflammation, in 454 individuals undergoing coronary angiography and analysed their influence on plasma C-reactive protein (CRP) and fibrinogen levels. Females and smokers had higher levels of CRP than males (Pi = 0.001) and non-smokers (Pi = 0.001). Patients with genotype 2.2 for the IL-1B(+3954) polymorphism had twice the median CRP levels of patients who were genotype 1.1 (4.33 vs 2.01 mg/l; P = 0.001). Patients with genotype 1.2 or 2.2 at the IL-1A(+4845) polymorphism also had higher median CRP (2.92 vs 2.05 mg/l, Pi = 0.023). In multivariate analyses, CRP levels remained significantly associated with IL-1 polymorphisms after adjustment for smoking, gender and age. Fibrinogen levels had similar associations with the IL-1 genotypes. These data indicate that IL-1 gene polymorphisms known to affect the inflammatory response are highly related to plasma levels of CRP and fibrinogen in patients referred for coronary angiography.  相似文献   

18.
PURPOSE: To investigate whether caffeic acid phenethyl ester (CAPE) and cortisone prevent proliferative vitreoretinopathy (PVR). METHODS: Twenty pigmented rabbits were used in this study. All rabbits except controls received an intravitreal injection of 0.15 ml (75,000 U) of platelet-rich plasma into their left eye. The animals were divided into four groups: group I was treated with intraperitoneal injection of 0.5 ml (15 micromol/kg) of CAPE for 3 days, group II received 0.15 ml (4 mg/kg) of intravitreal cortisone, group III received nothing (blank group), and group IV (control group) received only 1 ml of 1% ethanol intraperitoneally daily for 3 days. Proliferative changes were graded in a masked fashion by indirect ophthalmoscopy for a 15-day follow-up period. The malondialdehyde (MDA), reduced glutathione (GSH) and total nitrite (NO) levels were measured in the vitreous humor. RESULTS: The grades of PVR were B-C in group I, and C-D in group II. The PVR grade in the control group was C-D. The mean MDA level in group I (4.0+/-0.8 micromol/l) was significantly lower than in the blank group (6.0 micromol/l) (p < 0.05). The mean GSH level in group I (71.0+/-11.2 micromol/l) was significantly different than in the blank group (p < 0.05). The MDA and GSH levels in group II were 4.7+/-0.6 micromol/l and 53.8+/-7.8 micromol/l, respectively. Both these levels were not significantly different from the blank group (p > 0.05). The NO levels in both treatment groups were significantly lower than in the blank group (p < 0.001). CONCLUSION: These findings suggest an inhibitory effect of CAPE on PVR. The inhibitory effect was supported by lower MDA and NO with higher GSH levels in treatment groups than in the blank group. There was no detected significant effect of cortisone for preventing PVR experimentally.  相似文献   

19.
Although the use of vitamin E supplements has been associated with a reduction in coronary events, assumed to be due to lowered lipid peroxidation, there are no previous long-term clinical trials into the effects of vitamin C or E supplementation on lipid peroxidation in vivo. Here, we have studied the long-term effects of vitamins C and E on plasma F2-isoprostanes, a widely used marker of lipid peroxidation in vivo. As a study cohort, a subset of the "Antioxidant Supplementation in Atherosclerosis Prevention" (ASAP) study was used. ASAP is a double-masked placebo-controlled randomized clinical trial to study the long-term effect of vitamin C (500 mg of slow release ascorbate daily), vitamin E (200 mg of D-alpha-tocopheryl acetate daily), both vitamins (CellaVie), or placebo on lipid peroxidation, atherosclerotic progression, blood pressure and myocardial infarction (n = 520 at baseline). Lipid peroxidation measurements were carried out in 100 consecutive men at entry and repeated at 12 months. The plasma F2-isoprostane concentration was lowered by 17.3% (95% CI 3.9-30.8%) in the vitamin E group (p = 0.006 for the change, as compared with the placebo group). On the contrary, vitamin C had no significant effect on plasma F2-isoprostanes as compared with the placebo group. There was also no interaction in the effect between these vitamins. In conclusion, long-term oral supplementation of clinically healthy, but hypercholesterolemic men, who have normal vitamin C and E levels with a reasonable dose of vitamin E lowers lipid peroxidation in vivo, but a relatively high dose of vitamin C does not. This observation may provide a mechanism for the observed ability of vitamin E supplements to prevent atherosclerosis.  相似文献   

20.
Vitamin D (VitD) supplementation has been advocated for cardiovascular risk reduction; however, supporting data are sparse. The objective of this study was to determine whether VitD supplementation reduces cardiovascular risk. Subjects in this prospective, randomized, double-blind, placebo-controlled trial of post-menopausal women with serum 25-hydroxyvitamin D concentrations >10 and <60 ng/mL were randomized to Vitamin D3 2500 IU or placebo, daily for 4 months. Primary endpoints were changes in brachial artery flow-mediated vasodilation (FMD), carotid-femoral pulse wave velocity (PWV), and aortic augmentation index (AIx). The 114 subjects were mean (standard deviation) 63.9 (3.0) years old with a 25-hydroxyvitamin D level of 31.3 (10.6) ng/mL. Low VitD (<30 ng/mL) was present in 47% and was associated with higher body-mass index, systolic blood pressure, glucose, CRP, and lower FMD (all p<0.05). After 4 months, 25-hydroxyvitamin D levels increased by 15.7 (9.3) ng/mL on vitamin D3 vs. -0.2 (6.1) ng/mL on placebo (p<0.001). There were no significant differences between groups in changes in FMD (0.3 [3.4] vs. 0.3 [2.6] %, p = 0.77), PWV (0.00 [1.06] vs. 0.05 [0.92] m/s, p = 0.65), AIx (2.7 [6.3] vs. 0.9 [5.6] %, p = 0.10), or CRP (0.3 [1.9] vs. 0.3 [4.2] mg/L, p = 0.97). Multivariable models showed no significant interactions between treatment group and low VitD status (<30 ng/mL) for changes in FMD (p = 0.65), PWV (p = 0.93), AIx (p = 0.97), or CRP (p = 0.26). In conclusion, VitD supplementation did not improve endothelial function, arterial stiffness, or inflammation. These observations do not support use of VitD supplementation to reduce cardiovascular disease risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号