首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barbar E 《Biochemistry》2008,47(2):503-508
The operations within a living cell depend on the collective activity of networks of proteins, sometimes termed "interactomes". Within these networks, most proteins interact with few partners, while a small proportion of proteins, called hubs, participate in a large number of interactions and play a central role in organizing these interactomes. LC8 was first discovered as an essential component of the microtubule-based molecular motor dynein and as such is involved in fundamental processes, including retrograde vesicular trafficking, ciliary/flagellar motility, and cell division. More recently, evidence has accumulated that LC8 also interacts with proteins that are not clearly connected with dynein or microtubule-based transport, including some with roles in apoptosis, viral pathogenesis, enzyme regulation, and kidney development. Here, we introduce the idea that LC8 is a hub protein essential in diverse protein networks, and its function as a dynein light chain is but one of many. We further propose that the crucial regulatory roles of LC8 in various systems are due to its ability to promote dimerization of partially disordered proteins.  相似文献   

2.
Redox regulation of nuclear factor kappaB (NF-kappaB) has been described, but the molecular mechanism underlying such regulation has remained unclear. We recently showed that a novel disulfide reductase, TRP14, inhibits tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation, and we identified the dynein light chain LC8, which interacts with the NF-kappaB inhibitor IkappaBalpha, as a potential substrate of TRP14. We now show the molecular mechanism by which NF-kappaB activation is redox-dependently regulated through LC8. LC8 inhibited TNFalpha-induced NF-kappaB activation in HeLa cells by interacting with IkappaBalpha and thereby preventing its phosphorylation by IkappaB kinase (IKK), without affecting the activity of IKK itself. TNFalpha induced the production of reactive oxygen species, which oxidized LC8 to a homodimer linked by the reversible formation of a disulfide bond between the Cys(2) residues of each subunit and thereby resulted in its dissociation from IkappaBalpha. Butylated hydroxyanisol, an antioxidant, and diphenyleneiodonium, an inhibitor of NADPH oxidase, attenuated the phosphorylation and degradation of IkappaBalpha by TNFalpha stimulation. In addition LC8 inhibited NF-kappaB activation by other stimuli including interleukin-1beta and lipopolysaccharide, both of which generated reactive oxygen species. Furthermore, TRP14 catalyzed reduction of oxidized LC8. Together, our results indicate that LC8 binds IkappaBalpha in a redox-dependent manner and thereby prevents its phosphorylation by IKK. TRP14 contributes to this inhibitory activity by maintaining LC8 in a reduced state.  相似文献   

3.
4.
5.
Nuclear localization sequence (NLS)-dependent nuclear protein import is not conventionally held to require interaction with microtubules (MTs) or components of the MT motor, dynein. Here we report for the first time the role of sequences conferring association with dynein light chains (DLCs) in NLS-dependent nuclear accumulation of the rabies virus P-protein. We find that P-protein nuclear accumulation is significantly enhanced by its dynein light chain association sequence (DLC-AS), dependent on MT integrity and association with DLCs, and that P-protein-DLC complexes can associate with MT cytoskeletal structures. We also find that P-protein DLC-AS, as well as analogous sequences from other proteins, acts as an independent module that can confer enhancement of nuclear accumulation to proteins carrying the P-protein NLS, as well as several heterologous NLSs. Photobleaching experiments in live cells demonstrate that the MT-dependent enhancement of NLS-mediated nuclear accumulation by the P-protein DLC-AS involves an increased rate of nuclear import. This is the first report of DLC-AS enhancement of NLS function, identifying a novel mechanism regulating nuclear transport with relevance to viral and cellular protein biology. Importantly, this data indicates that DLC-ASs represent versatile modules to enhance nuclear delivery with potential therapeutic application.  相似文献   

6.
The spindle assembly checkpoint monitors microtubule attachment to kinetochores and tension across sister kinetochores to ensure accurate division of chromosomes between daughter cells. Cytoplasmic dynein functions in the checkpoint, apparently by moving critical checkpoint components off kinetochores. The dynein subunit required for this function is unknown. Here we show that human cells depleted of dynein light intermediate chain 1 (LIC1) delay in metaphase with increased interkinetochore distances; dynein remains intact, localised and functional. The checkpoint proteins Mad1/2 and Zw10 localise to kinetochores under full tension, whereas BubR1 is diminished at kinetochores. Metaphase delay and increased interkinetochore distances are suppressed by depletion of Mad1, Mad2 or BubR1 or by re‐expression of wtLIC1 or a Cdk1 site phosphomimetic LIC1 mutant, but not Cdk1‐phosphorylation‐deficient LIC1. When the checkpoint is activated by microtubule depolymerisation, Mad1/2 and BubR1 localise to kinetochores. We conclude that a Cdk1 phosphorylated form of LIC1 is required to remove Mad1/2 and Zw10 but not BubR1 from kinetochores during spindle assembly checkpoint silencing.  相似文献   

7.
Toward the end of spermiogenesis, spermatid nuclei are compacted and the clonally related spermatids individualize to become mature and active sperm. Studies in Drosophila showed that caudal end-directed movement of a microfilament-rich structure, called investment cone, expels the cytoplasmic contents of individual spermatids. F-actin dynamics plays an important role in this process. Here we report that the dynein light chain 1 (DLC1) of Drosophila is involved in two separate cellular processes during sperm individualization. It is enriched around spermatid nuclei during postelongation stages and plays an important role in the dynein-dynactin-dependent rostral retention of the nuclei during this period. In addition, DDLC1 colocalizes with dynamin along investment cones and regulates F-actin assembly at this organelle by retaining dynamin along the cones. Interestingly, we found that this process does not require the other subunits of cytoplasmic dynein-dynactin complex. Altogether, these observations suggest that DLC1 could independently regulate multiple cellular functions and established a novel role of this protein in F-actin assembly in Drosophila.  相似文献   

8.
Recent studies have identified dynein light chain-1 (DLC1), a component of the dynein motor, as a p21-activated kinase 1 (Pak1)-interacting substrate with binding sites mapped to amino acids 61-89 of DLC1 and phosphorylation site at serine 88. Here we investigated the role of DLC1 phosphorylation by Pak1 upon the process of macropinocytosis. We found that Pak1 associates with dynein motor and that Pak1-DLC1 interaction starts at the initiation of pinosome formation and persists in early and late endosomes. Pak1 phosphorylation of DLC1 on Ser-88 controls vesicle formation and trafficking functions, as Ser-88 substitution for alanine prevents macropinocytosis. A peptide spanning the C-terminal 19-amino acid region of DLC1 efficiently blocked Ser-88 phosphorylation and macropinocytosis. These results suggest that the regulation of DLC1 by Pak1 is a novel mechanism by which a signaling kinase might influence macropinocytosis.  相似文献   

9.
10.
A highly conserved and ubiquitous protein known as LC8 binds over twenty different partners, characteristic of a molecular hub (Barbar, 2008 Biochemistry, 47, 503-508). Structural studies of LC8 complexes with binding partners having diverse recognition sequences show that the same binding groove of LC8 accommodates the various binding motifs. Here we use thermodynamics and dynamics measurements of LC8 complexes to group LC8 binding partners in two categories: those whose binding is enthalpically driven and those that are entropically favored. Peptides that are enthalpically driven completely silence the millisecond-microsecond relaxation signal, suggesting a significant rigidifying of the binding groove, while peptides in the entropically favored group exhibit the same conformational dynamics as the free protein, suggesting that the peptide sits loosely in the binding groove and so retains flexibility of the groove, and presumably of the bound peptide. The inherent disorder in the LC8 binding groove and in LC8 binding partners allows both types of binding, accounts for the lack of a conserved recognition consensus motif and underlies the binding specificity and broad selectivity observed in LC8 binding.  相似文献   

11.
LC8 is present in various molecular complexes. However, its role in these complexes remains unclear. We discovered that although LC8 is a subunit of the radial spoke (RS) complex in Chlamydomonas flagella, it was undetectable in the RS precursor that is converted into the mature RS at the tip of elongating axonemes. Interestingly, LC8 dimers bound in tandem to the N-terminal region of a spoke phosphoprotein, RS protein 3 (RSP3), that docks RSs to axonemes. LC8 enhanced the binding of RSP3 N-terminal fragments to purified axonemes. Likewise, the N-terminal fragments extracted from axonemes contained LC8 and putative spoke-docking proteins. Lastly, perturbations of RSP3's LC8-binding sites resulted in asynchronous flagella with hypophosphorylated RSP3 and defective associations between LC8, RSs, and axonemes. We propose that at the tip of flagella, an array of LC8 dimers binds to RSP3 in RS precursors, triggering phosphorylation, stalk base formation, and axoneme targeting. These multiple effects shed new light on fundamental questions about LC8-containing complexes and axoneme assembly.  相似文献   

12.
Cytoplasmic dynein is a large minus end-directed microtubule motor that translocates cargos towards the minus end of microtubules. Light chain 8 of the dynein machinery (LC8) has been reported to interact with a large variety of proteins that possess K/RSTQT or GIQVD motifs in their sequence, hence permitting their transport in a retrograde manner. Yeast two-hybrid analysis has revealed that in brain, LC8 associates directly with several proteins such as neuronal nitric oxide synthase, guanylate kinase domain-associated protein and gephyrin. In this work, we report the identification of over 40 polypeptides, by means of a proteomic approach, that interact with LC8 either directly or indirectly. Many of the neuronal proteins that we identified cluster at the post-synaptic terminal, and some of them such as phosphofructokinase, lactate dehydrogenase or aldolase are directly involved in glutamate metabolism. Other pool of proteins identified displayed the LC8 consensus binding motif. Finally, recombinant LC8 was produced and a library of overlapping dodecapeptides (pepscan) was employed to map the LC8 binding site of some of the proteins that were previously identified using the proteomic approach, hence confirming binding to the consensus binding sites.  相似文献   

13.
Genetic and in vitro analyses have revealed that radial spokes play a crucial role in regulation of ciliary and flagellar motility, including control of waveform. However, the mechanisms of regulation are not understood. Here, we developed a novel procedure to isolate intact radial spokes as a step toward understanding the mechanism by which these complexes regulate dynein activity. The isolated radial spokes sediment as 20S complexes that are the size and shape of radial spokes. Extracted radial spokes rescue radial spoke structure when reconstituted with isolated axonemes derived from the radial spoke mutant pf14. Isolated radial spokes are composed of the 17 previously defined spoke proteins as well as at least five additional proteins including calmodulin and the ubiquitous dynein light chain LC8. Analyses of flagellar mutants and chemical cross-linking studies demonstrated calmodulin and LC8 form a complex located in the radial spoke stalk. We postulate that calmodulin, located in the radial spoke stalk, plays a role in calcium control of flagellar bending.  相似文献   

14.
Cytoplasmic dynein is the major minus-end directed microtubule-based motor in eukaryotic cells. It is composed of a number of different subunits including three light chain families: Tctex1, LC8, and roadblock. The incorporation of the roadblock light chains into the cytoplasmic dynein complex had not been determined. There are two roadblock genes in mammals, ROBL-1 and ROBL-2. We find that both members of the roadblock family bind directly to all of the intermediate chain isoforms of mammalian cytoplasmic dynein. This was determined with three complementary approaches. A yeast two-hybrid assay demonstrated that both roadblock light chains interact with intermediate chain isoforms from the IC74-1 and IC74-2 genes in vivo. This was confirmed in vitro with both a solid phase blot overlay assay and a solution-binding assay. The roadblock-binding domain on the intermediate chain was mapped to an approximately 72 residue region. The binding domain is downstream of each of the two alternative splice sites in the intermediate chains. This location is consistent with the finding that both roadblock-1 and roadblock-2 show no binding specificity for a single IC74-1 or IC74-2 intermediate chain isoform. In addition, this roadblock-binding domain is significantly downstream from both the Tctex1- and LC8-binding sites, supporting the hypothesis that multiple light chain family members can bind to the same intermediate chain.  相似文献   

15.
LC8 dynein light chain (now termed DYNLL1 and DYNLL2 in mammals), a dimeric 89 amino acid protein, is a component of the dynein multi-protein complex. However a substantial amount of DYNLL1 is not associated to microtubules and it can thus interact with dozens of cellular and viral proteins that display well-defined, short linear motifs. Using DYNLL1 as bait in a yeast two-hybrid screen of a human heart library we identified ATMIN, an ATM kinase-interacting protein, as a DYNLL1-binding partner. Interestingly, ATMIN displays at least 18 SQ/TQ motifs in its sequence and DYNLL1 is known to bind to proteins with KXTQT motifs. Using pepscan and yeast two-hybrid techniques we show that DYNLL1 binds to multiple SQ/TQ motifs present in the carboxy-terminal domain of ATMIN. Recombinant expression and purification of the DYNLL1-binding region of ATMIN allowed us to obtain a polypeptide with an apparent molecular mass in gel filtration close to 400 kDa that could bind to DYNLL1 in vitro. The NMR data-driven modelled complexes of DYNLL1 with two selected ATMIN peptides revealed a similar mode of binding to that observed between DYNLL1 and other peptide targets. Remarkably, co-expression of mCherry-DYNLL1 and GFP-ATMIN mutually affected intracellular protein localization. In GFP-ATMIN expressing-cells DNA damage induced efficiently nuclear foci formation, which was partly impeded by the presence of mCherry-DYNLL1. Thus, our results imply a potential cellular interference between DYNLL1 and ATMIN functions.  相似文献   

16.
17.
The LC8 family members of dynein light chains (DYNLL1 and DYNLL2 in vertebrates) are highly conserved ubiquitous eukaryotic homodimer proteins that interact, besides dynein and myosin 5a motor proteins, with a large (and still incomplete) number of proteins involved in diverse biological functions. Despite an earlier suggestion that LC8 light chains function as cargo adapters of the above molecular motors, they are now recognized as regulatory hub proteins that interact with short linear motifs located in intrinsically disordered protein segments. The most prominent LC8 function is to promote dimerization of their binding partners that are often scaffold proteins of various complexes, including the intermediate chains of the dynein motor complex. Structural and functional aspects of this intriguing hub protein will be highlighted in this minireview.  相似文献   

18.
Barbar E  Kleinman B  Imhoff D  Li M  Hays TS  Hare M 《Biochemistry》2001,40(6):1596-1605
Cytoplasmic dynein is a multisubunit ATPase that transforms chemical energy into motion along microtubules. LC8, a 10 kDa light chain subunit of the dynein complex, is highly conserved with 94% sequence identity between Drosophila and human. The precise function of this protein is unknown, but its ubiquitous expression and conservation suggest a critical role in the function of the dynein motor complex. We have overexpressed LC8 from Drosophila melanogaster and characterized its dimerization and folding using analytical ultracentrifugation, size-exclusion chromatography, circular dichroism, and fluorescence spectroscopy. Sedimentation equilibrium measurements of LC8 at pH 7 reveal a reversible monomer-dimer equilibrium with a dissociation constant of 12 microM at 4 degrees C. At lower pH, LC8 dissociates to a monomer, with a transition midpoint at pH 4.8. Far-UV CD and fluorescence spectra demonstrate that pH-dissociated LC8 retains native secondary and tertiary structures, while the diminished near-UV CD signal shows loss of quaternary structure. The observation that dimeric LC8 dissociates at low pH can be explained by titration of a histidine pair in the dimer interface. Equilibrium denaturation experiments with a protein concentration range spanning almost 2 orders of magnitude indicate that unfolding of LC8 dimer is a two-stage process, in which global unfolding is preceded by dissociation to a folded monomer. The nativelike tertiary structure of the monomer suggests a role for the monomer-dimer equilibrium of LC8 in dynein function.  相似文献   

19.
We have previously provided evidence that laminin assembly occurs by the specific interaction of the alpha-helical domains of the A, B1, and B2 chains, located within the long arm of the molecule (Hunter, I., Schulthess, T., Bruch, M., Beck, K., and Engel, J. (1990) Eur. J. Biochem. 188, 205-211). Recent evidence for noncoordinate synthesis of the laminin chains, and in particular, the absence of the 400-kDa A chain from laminins produced by a number of cell types, has led us to examine the molecular mechanism of laminin assembly using the isolated A and B1-B2 chains of laminin fragment E8. E8A shows little tendency to self-associate, and when renatured from urea forms globular structures with little detectable alpha-helix. In contrast, E8B1-B2 renatures to form rod-like molecules, 30 nm in length. The rod-like structure, high alpha-helix content, and sharp thermal transition indicate that they are double stranded coiled coils. When mixed in equimolar amounts, E8A and E8B1-B2 renature to form molecules which are biochemically and ultrastructurally indistinguishable from native E8. If E8A and E8B1-B2 are renatured separately and mixed at a 1:1 molar ratio, they also form E8 molecules. These results suggest a mechanism of laminin assembly which involves the formation of a double coiled-coil B1-B2 intermediate with which the A chain subsequently interacts to form a triple coiled-coil laminin molecule. In addition, our results indicate that isoforms consisting of the B1 and B2 chains only would form stable "laminin-like" structures.  相似文献   

20.
Ebola virus VP35 inhibits alpha/beta interferon production and functions as a viral polymerase cofactor. Previously, the 8-kDa cytoplasmic dynein light chain (LC8) was demonstrated to interact with VP35, but the functional consequences were unclear. Here we demonstrate that the interaction is direct and of high affinity and that binding stabilizes the VP35 N-terminal oligomerization domain and enhances viral RNA synthesis. Mutational analysis demonstrates that VP35 interaction is required for the functional effects of LC8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号