首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A library of natural and semi-synthetic Amaryllidaceae alkaloids was screened for cytochrome P450 3A4 (CYP3A4) inhibitory activity. Of the crinane, lycorane and galanthamine representatives examined two semi-synthetic silylated lycorane analogues, accessed via a chemoselective silylation strategy from lycorine, and the natural compound narciclasine exhibited low micromolar activities. Important pharmacological features uncovered include the lack of CYP3A4 inhibitory activity seen for galanthamine and the selective activity that is seen with narciclasine over pancratistatin.  相似文献   

2.
Cytochrome P450 3A4 (CYP3A4) catalyzes the initial step in the clearance of many pharmaceuticals and foreign chemicals. The structurally diverse nature of CYP3A4 substrates complicates rational prediction of their metabolism and identification of potential drug interactions. The first molecular structures of human CYP3A4 were recently determined, revealing an active site of sufficient size and topography to accommodate either large ligands or multiple smaller ligands, as suggested by the heterotropic and homotropic cooperativity of the enzyme.  相似文献   

3.
The electrochemical analysis of cytochrome P450 3A4 catalytic activity has shown that vitamins C, A and E influence reduction of cytochrome P450 3A4. These data suggest a possibility of cross effects and interference of vitamins-antioxidants with drugs metabolised by cytochrome P450 3A4, during complex therapy of patients. These vitamins demonstrate antioxidant properties that lead to the increase of the cathodic current corresponding to heme reduction of this functionally significant hemoprotein. Ascorbic acid (0.028–0.56 mM) stimulated the cathodic peak (an electrochemical signal) of cytochrome P450 3A4. In the presence of diclofenac (Voltaren), a typical substrate of cytochrome P450 3A4, the increase in the catalytic current suggesting electrocatalysis and stimulating action of ascorbic acid was observed. In the presence of vitamins A and E the dose-dependent increase in the catalytic current of cytochrome P450 3A4 was observed in the range of vitamin concentrations from 10 to 100 μM. The maximal increase of 229 ± 20 and 162 ± 10% was observed at 100 μM vitamin A and vitamin E, respectively. In contrast to vitamin A, vitamin E in the presence of the cytochrome P450 inhibitor itraconazole did not increase the catalytic current. The latter implies existence of some substrate properties in vitamin E. The electrochemical approach for the analysis of catalytic activity of cytochrome P450 3A4 and studies of the effect of biologically active compounds on electrocatalysis is the sensitive and effective sensor approach, allowing to use low concentration of protein on an electrode (up to 10–15 mol/electrode), to carry out the analysis without involvement of protein redox partners, and to reveal drug-drug or drug-vitamins interaction in pre-clinical experiments.  相似文献   

4.
We have incorporated CYP3A4 (cytochrome P450 3A4) and CPR (NADPH-cytochrome P450 reductase) into liposomes with a high lipid/protein ratio by an improved method. In the purified proteoliposomes, CYP3A4 binds testosterone with Kd (app)=36±6 μM and Hill coefficient=1.5±0.3, and 75±4% of the CYP3A4 can be reduced by NADPH in the presence of testosterone. Transfer of the first electron from CPR to CYP3A4 was measured by stopped-flow, trapping the reduced CYP3A4 as its Fe(II)-CO complex and measuring the characteristic absorbance change. Rapid electron transfer is observed in the presence of testosterone, with the fast phase, representing 90% of the total absorbance change, having a rate of 14±2 s(-1). Measurements of the first electron transfer were performed at various molar ratios of CPR/CYP3A4 in proteoliposomes; the rate was unaffected, consistent with a model in which first electron transfer takes place within a relatively stable CPR-CYP3A4 complex. Steady-state rates of NADPH oxidation and of 6β-hydroxytestosterone formation were also measured as a function of the molar ratio of CPR/CYP3A4 in the proteoliposomes. These rates increased with increasing CPR/CYP3A4 ratio, showing a hyperbolic dependency indicating a Kd (app) of ~0.4 μM. This suggests that the CPR-CYP3A4 complex can dissociate and reform between the first and second electron transfers.  相似文献   

5.
If cholesterol is a substrate of P450 3A4, then it follows that it should also be an inhibitor, particularly in light of the high concentrations found in liver. Heme perturbation spectra indicated a K(d) value of 8 μM for the P450 3A4-cholesterol complex. Cholesterol inhibited the P450 3A4-catalyzed oxidations of nifedipine and quinidine, two prototypic substrates, in liver microsomes and a reconstituted enzyme system with K(i) ~ 10 μM in an apparently non-competitive manner. The concentration of cholesterol could be elevated 4-6-fold in cultured human hepatocytes by incubation with cholesterol; the level of P450 3A4 and cell viability were not altered under the conditions used. Nifedipine oxidation was inhibited when the cholesterol level was increased. We conclude that cholesterol is both a substrate and an inhibitor of P450 3A4, and a model is presented to explain the kinetic behavior. We propose that the endogenous cholesterol in hepatocytes should be considered in models of prediction of metabolism of drugs and steroids, even in the absence of changes in the concentrations of free cholesterol.  相似文献   

6.
The one-electron autoxidation of human cytochrome P450 3A4   总被引:1,自引:0,他引:1  
Monomeric cytochrome P450 3A4 (CYP3A4), the most prevalent cytochrome P450 in human liver, can simultaneously bind one, two, or three molecules of substrates and effectors. The difference in the functional properties of such binding intermediates gives rise to homotropic and heterotropic cooperative kinetics of this enzyme. To understand the overall kinetic processes operating in CYP3A4, we documented the kinetics of autoxidation of the oxy-ferrous intermediate of CYP3A4 as a function of testosterone concentration. The rate of autoxidation in the presence of testosterone was significantly lower than that observed with no substrate present. Stability of the oxy-ferrous complex in CYP3A4 and the amplitude of the geminate CO rebinding increased significantly as a result of binding of just one testosterone molecule. In contrast, the slow phase in the kinetics of cyanide binding to the ferric CYP3A4 correlated with a shift of the heme iron spin state, which is only caused by the association of a second molecule of testosterone. Our results show that the first substrate binding event prevents the escape of diatomic ligands from the distal heme binding pocket, stabilizes the oxy-ferrous complex, and thus serves as an important modulator of the uncoupling channel in the cytochromes P450.  相似文献   

7.
Wang X  Yeung JH 《Phytomedicine》2012,19(3-4):348-354
Danshen (Salvia miltiorrhiza Bunge) as a famous Traditional Chinese medicine is widely used in the treatment of cardiovascular and cerebrovascular diseases in the world. Danshen tincture (DT), extracted from Danshen root with a mixture of water and alcohol, is a commonly used preparation method for human consumption. The aim of this study was to investigate the effects of DT on the cytochrome P450 (CYP) 1A2 and 3A activities by human and rat liver microsomes. Effects of DT were assessed with use of Danshen ethanolic extract (DEE) and selective substrates, markers of CYP activities. DEE (0.5-10 μg/ml) competitively inhibited human and rat liver microsomal CYP1A2 activity with inhibition constant (K(i)) values at 3.40 and 5.16 μg/ml, respectively. At the same time, DEE (2.5-20 μg/ml) not only noncompetitively inhibited human liver microsomal CYP3A4/5 activity with a K(i) of 11.9 μg/ml, but also competitively inhibited rat liver microsomal CYP3A1/2 activity with a K(i) of 52.1 μg/ml. The data indicate that DEE inhibited the metabolism of CYP1A2 and 3A substrates in human and rat liver in vitro with different mode of inhibition. This study may be helpful for clinical application of Danshen tincture.  相似文献   

8.
Cytochrome P450 (P450) 3A4, the major catalyst involved in human drug oxidation, displays substrate- and reaction-dependent homotropic and heterotropic cooperative behavior. Although several models have been proposed, these mainly rely on steady-state kinetics and do not provide information on the contribution of the individual steps of P450 catalytic cycle to the observed cooperativity. In this work, we focused on the kinetics of substrate binding, and the fluorescent properties of bromocriptine and alpha-naphthoflavone allowed analysis of an initial ligand-P450 3A4 interaction that does not cause a perturbation of the heme spectrum. The binding stoichiometry for bromocriptine was determined to be unity using isothermal titration calorimetry and equilibrium dialysis methods, suggesting that the ligand bound to the peripheral site during the initial encounter dissociates subsequently. A three-step substrate binding model is proposed, based on absorbance and fluorescence stopped-flow kinetic data and equilibrium binding data obtained with bromocriptine, and evaluated using kinetic modeling. The results are consistent with the substrate molecule binding at a site peripheral to the active site and subsequently moving toward the active site to bind to the heme and resulting in a low to high spin iron shift. The last step is attributed to a conformational change in the enzyme active site. The later steps of binding were shown to have rate constants comparable with the subsequent steps of the catalytic cycle. The P450 3A4 binding process is more complex than a two-state system, and the overlap of rates of some of the events with subsequent steps is proposed to underlie the observed cooperativity.  相似文献   

9.
Mechanism-based inactivation of human liver P450 3A4 by L-754,394, a Merck compound synthesized as a potential HIV protease inhibitor, was investigated using recombinant P450 3A4. Enzyme inactivation was characterized by a small partition ratio (3.4 or 4.3 +/- 0.4), i.e., the total number of metabolic events undergone by the inhibitor divided by the number of enzyme inactivating events, lack of reversibility upon extensive dialysis, no decrease in the characteristic 450-nm species relative to control, and covalent modification of the apoprotein. The major and minor products formed during the inactivation of P450 3A4 were the monohydroxylated and the dihydrodiol metabolites of L-754,394, respectively. L-754,394 that had been adducted to P450 3A4 was hydrolyzed under the conditions used for SDS-PAGE, Ni(2+) affinity chromatography, and proteolytic digestion. In addition, the modification was not stable to the acidic conditions of HPLC separation and CNBr digestion. The labile nature of the peptide adduct and the nonstoichiometric binding of the inactivating species to P450 3A4 precluded the direct identification of a covalently modified amino acid residue or the peptide to which it was attached. However, Tricine SDS-PAGE in combination with MALDI-TOF-MS and homology modeling, allowed I257-M317 to be tentatively identified as an active site peptide, while prior knowledge of the stability of N-, O-, and S-linked conjugates of activated furans implicates Glu307 as the active site amino acid that is labeled by L-754, 394.  相似文献   

10.
Human cytochrome P450 3A4 forms a series of minor testosterone hydroxylation products in addition to 6 beta-hydroxytestosterone, the major product. One of these, formed at the next highest rate after the 6 beta- and 2 beta-hydroxy products, was identified as 1 beta-hydroxytestosterone. This product was characterized from a mixture of testosterone oxidation products using an HPLC-solid phase extraction-cryoprobe NMR/time-of-flight mass spectrometry system, with an estimated total of approximately 6 microg of this product. Mass spectrometry established the formula as C(19)H(29)O(3) (MH(+) 305.2080). The 1-position of the added hydroxyl group was established by correlated spectroscopy and heteronuclear spin quantum correlation experiments, and the beta-stereochemistry of the added hydroxyl group was assigned with a nuclear Overhauser correlated spectroscopy experiment (1 alpha-H). Of several human P450s examined, only P450 3A4 formed this product. The product was also formed in human liver microsomes.  相似文献   

11.
A multiconformational study of substrates of cytochrome P450 3A4 has been carried out within the BiS/MC algorithm. The method allowed one to create a pseudoatomic model of the cytochrome and to find the substrate conformers responsible for the interaction with the cytochrome. It has been found that, in most cases, the geometry of the acting conformer is much different from the geometry of the global minimum conformer. It has been shown that the mirror conformational antipodes ("enantioconformers") are characterized as a rule by different Michaelis constants. A quantitative relationship between the Michaelis constants and the parameters of interactions in "model 3A4 isoform-substrate" complexes has been determined. The relationship describes the experimental value of Michaelis constant with the squared cross-validation correlation coefficient of 0.88.  相似文献   

12.
Elucidation of distinct ligand binding sites for cytochrome P450 3A4   总被引:4,自引:0,他引:4  
Hosea NA  Miller GP  Guengerich FP 《Biochemistry》2000,39(20):5929-5939
Cytochrome P450 (P450) 3A4 is the most abundant human P450 enzyme and has broad selectivity for substrates. The enzyme can show marked catalytic regioselectivity and unusual patterns of homotropic and heterotropic cooperativity, for which several models have been proposed. Spectral titration studies indicated one binding site for the drug indinavir (M(r) 614), a known substrate and inhibitor. Several C-terminal aminated peptides, including the model morphiceptin (YPFP-NH(2)), bind with spectral changes indicative of Fe-NH(2) bonding. The binding of the YPFP-NH(2) N-terminal amine and the influence of C-terminal modification on binding argue that the entire molecule (M(r) 521) fits within P450 3A4. YPFP-NH(2) was not oxidized by P450 3A4 but blocked binding of the substrates testosterone and midazolam, with K(i) values similar to the spectral binding constant (K(s)) for YPFP-NH(2). YPFP-NH(2) inhibited the oxidations of several typical P450 substrates with K(i) values 10-fold greater than the K(s) for binding YPFP-NH(2) and its K(i) for inhibiting substrate binding. The n values for cooperativity of these oxidations were not altered by YPFP-NH(2). YPFP-NH(2) inhibited the oxidations of midazolam at two different positions (1'- and 4-) with 20-fold different K(i) values. The differences in the K(i) values for blocking the binding to ferric P450 3A4 and the oxidation of several substrates may be attributed to weaker binding of YPFP-NH(2) to ferrous P450 3A4 than to the ferric form. The ferrous protein can be considered a distinct form of the enzyme in binding and catalysis because many substrates (but not YPFP-NH(2)) facilitate reduction of the ferric to ferrous enzyme. Our results with these peptides are considered in the context of several proposed models. A P450 3A4 model based on these peptide studies contains at least two and probably three distinct ligand sites, with testosterone and alpha-naphthoflavone occupying distinct sites. Midazolam appears to be able to bind to P450 3A4 in two modes, one corresponding to the testosterone binding mode and one postulated to reflect binding in a third site, distinct from both testosterone and alpha-naphthoflavone. The work with indinavir and YPFP-NH(2) also argues that room should be present in P450 3A4 to bind more than one smaller ligand in the "testosterone" site, although no direct evidence for such binding exists. Although this work with peptides provides evidence for the existence of multiple ligand binding sites, the results cannot be used to indicate their juxtaposition, which may vary through the catalytic cycle.  相似文献   

13.
Human liver P450 NF25 (CYP3A4) had been previously expressed in Saccharomyces cerevisiae using the inducible GAL10-CYC1 promoter and the phosphoglycerate kinase gene terminator [Renaud, J. P., Cullin, C., Pompon, D., Beaune, P. and Mansuy, D. (1990) Eur. J. Biochem. 194, 889-896]. The use of an improved expression vector [Urban, P., Cullin, C. and Pompon, D. (1990) Biochimie 72, 463-472] increased the amounts of P450 NF25 produced/culture medium by a factor of five, yielding up to 10 nmol/l. The availability of recently developed host cells that simultaneously overexpress yeast NADPH-P450 reductase and/or express human liver cytochrome b5, obtained through stable integration of the corresponding coding sequences into the yeast genome, led to biotechnological systems with much higher activities of yeast-expressed P450 NF25 and with much better ability to form P450 NF25-iron-metabolite complexes. 9-fold, 8-fold, and 30-fold rate increases were found respectively for nifedipine 1,4-oxidation, lidocaine N-deethylation and testosterone 6 beta-hydroxylation between P450 NF25-containing yeast microsomes from the basic strain and from the strain that both overexpresses yeast NADPH-P450 reductase and expresses human cytochrome b5. Even higher turnovers (15-fold, 20-fold and 50-fold rate increases) were obtained using P450 NF25-containing microsomes from the yeast just overexpressing yeast NADPH-P450 reductase in the presence of externally added, purified rabbit liver cytochrome b5. This is explained by the fact that the latter strain contained the highest level of NADPH-P450 reductase activity. It is noteworthy that for the three tested substrates, the presence of human or rabbit cytochrome b5 always showed a stimulating effect on the catalytic activities and this effect was saturable. Indeed, addition of rabbit cytochrome b5 to microsomes from a strain expressing human cytochrome b5 did not further enhance the catalytic rates. The yeast expression system was also used to study the formation of a P450-NF25-iron-metabolite complex. A P450 Fe(II)-(RNO) complex was obtained upon oxidation of N-hydroxyamphetamine, catalyzed by P450-NF25-containing yeast microsomes. In microsomes from the basic strain expressing P450 NF25, 10% of the starting P450 NF25 was transformed into this metabolite complex, whereas more than 80% of the starting P450 NF25 led to complex formation in microsomes from the strain overexpressing yeast NADPH-P450 reductase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A neural network based virtual screening of cytochrome P450 3A4 inhibitors   总被引:2,自引:0,他引:2  
A virtual screening test to identify potential CP450 3A4 inhibitors has been developed. Molecular structures of inhibitors and non-inhibitors available in the Genetest database were represented using 2D Unity fingerprints and a feedforward neural network was trained to classify molecules regarding their inhibitory activity. Validation tests revealed that our neural net recognizes at least 89% of 3A4 inhibitors and suggest using this methodology in our virtual screening protocol.  相似文献   

15.
Cytochrome P450 enzymes (P450s or CYPs) are good candidates for biocatalysis in the production of fine chemicals, including pharmaceuticals. Despite the potential use of mammalian P450s in various fields of biotechnology, these enzymes are not suitable as biocatalysts due to their low stability, low catalytic activity, and limited availability. Recently, wild-type and mutant forms of bacterial P450 BM3 (CYP102A1) from Bacillus megaterium have been found to metabolize various. It has therefore been suggested that CYP102A1 may be used to generate the metabolites of drugs and drug candidates. In this report, we show that the oxidation reactions of typical human CYP1A2 substrates (phenacetin, ethoxyresorufin, and methoxyresorufin) are catalyzed by both wild-type and mutant forms of CYP102A1. In the case of phenacetin, CYP102A1 enzymes show only O-deethylation product, even though two major products are produced as a result of O-deethylation and 3-hydroxylation reactions by human CYP1A2. Formation of the metabolites was confirmed by HPLC analysis and LC–MS to compare the metabolites with the actual biological metabolites produced by human CYP1A2. The results demonstrate that CYP102A1 mutants can be used for cost-effective and scalable production of human CYP1A2 drug metabolites. Our computational findings suggest that a conformational change in the cavity size of the active sites of the mutants is dependent on activity change. The modeling results further suggest that the activity change results from the movement of several specific residues in the active sites of the mutants.  相似文献   

16.
Penicillium digitatum, as well as five other citrus pathogenic species, (Penicillium ulaiense Link, Geotrichum citri Link, Botrytis cinerea P. Micheli ex Pers., Lasiodiplodia theobromae (Pat.) Griffon & Maubl., and Phomopsis citri (teleomorph Diaporthe citri)) were observed to convert 6',7'-epoxybergamottin (1) into 6',7'-dihydroxybergamottin (2), bergaptol (3), and an opened lactone ring metabolite 6,7-furano-5-(6',7'-dihydroxy geranyloxy)-2-hydroxy-hydrocoumaric acid (4). Metabolism of 2 by these fungi also proceeded to 4. The structure of 4 was established by high resolution mass spectrometry and (1)H and (13)C NMR techniques. The inhibitory activity of 4 towards human intestinal cytochrome P450 3A4 (CYP3A4) was greatly decreased (IC(50) >172.0 μM) compared to 2 (IC(50)=0.81 μM).  相似文献   

17.
18.
Role of c-Myc in nitric oxide-mediated suppression of cytochrome P450 3A4   总被引:1,自引:0,他引:1  
Cytochrome P450 (CYP) 3A4, which is abundant in human liver and small intestine and participates in the metabolism of various drugs and xenochemicals, is known to be induced by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in the colon carcinoma cell line Caco-2 cells. Nitric oxide (NO) is able to inhibit CYP3A4 expression and catalytic activity. In this study, we investigated the mechanism of suppression by NO of 1,25(OH)2D3-induced CYP3A4 expression in Caco-2 cells. Caco-2 cells were exposed for 36 h to 400 nM 1,25(OH)2D3, and the induction of CYP3A4 mRNA expression was detected by real-time PCR. Because c-Myc regulates the expression of several genes, we examined its effect on the CYP3A4 expression induced by 1,25(OH)2D3. The expression of c-myc mRNA was increased in the early stage but decreased 36 h after the treatment of Caco-2 cells with 1,25(OH)2D3. The NO donor NOR-4 suppressed CYP3A4 expression induced by 1,25(OH)2D3 in Caco-2 cells in contrast, it significantly induced c-myc gene expression. Treatment of Caco-2 cells with the c-myc antisense oligonucleotide reversed the inhibitory effect of NOR-4 on CYP3A4 expression induced by 1,25(OH)2D3. These results suggest that the suppression of 1,25(OH)2D3-induced CYP3A4 expression by NO is due to c-myc expression.  相似文献   

19.
Lampe JN  Atkins WM 《Biochemistry》2006,45(40):12204-12215
Cytochrome P450 3A4 (CYP3A4) is a major enzymatic determinant of drug and xenobiotic metabolism that demonstrates remarkable substrate diversity and complex kinetic properties. The complex kinetics may result, in some cases, from multiple binding of ligands within the large active site or from an effector molecule acting at a distal allosteric site. Here, the fluorescent probe TNS (2-p-toluidinylnaphthalene-6-sulfonic acid) was characterized as an active site fluorescent ligand. UV-vis difference spectroscopy revealed a TNS-induced low-spin heme absorbance spectrum with an apparent K(d) of 25.4 +/- 2 microM. Catalytic turnover using 7-benzyloxyquinoline (7-BQ) as a substrate demonstrated TNS-dependent inhibition with an IC(50) of 9.9 +/- 0.1 microM. These results suggest that TNS binds in the CYP3A4 active site. The steady-state fluorescence of TNS increased upon binding to CYP3A4, and fluorescence titrations yielded a K(d) of 22.8 +/- 1 microM. Time-resolved frequency-domain measurement of TNS fluorescence lifetimes indicates a testosterone (TST)-dependent decrease in the excited-state lifetime of TNS, concomitant with a decrease in the steady-state fluorescence intensity. In contrast, the substrate erythromycin (ERY) had no effect on TNS lifetime, while it decreased the steady-state fluorescence intensity. Together, the results suggest that TNS binds in the active site of CYP3A4, while the first equivalent of TST binds at a distant allosteric effector site. Furthermore, the results are the first to indicate that TST bound to the effector site can modulate the environment of the heterotropic ligand.  相似文献   

20.
Cytochrome P450 3A4 (CYP3A4) displays non-Michaelis-Menten kinetics for many of the substrates it metabolizes, including testosterone (TST) and α-naphthoflavone (ANF). Heterotropic effects between these two substrates can further complicate the metabolic profile of the enzyme. In this work, monomeric CYP3A4 solubilized in Nanodiscs has been studied for its ability to interact with varying molar ratios of ANF and TST. Comparison of the observed heme spin state, NADPH consumption, and product formation rates with a non-cooperative model calculated from a linear combination of the global analysis of each substrate reveals a detailed landscape of the heterotropic interactions and indicates negligible binding cooperativity between ANF and TST. The observed effect of ANF on the kinetics of TST metabolism is due to the additive action of the second substrate with no specific allosteric effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号