首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of 3H-NQNO in submitochondrial particles was determined by measuring the radioactivity in the supernatants as well as in the sediments after centrifugation of particles suspensions containing different amounts of 3H-NQNO. From the binding data Scatchard plots were constructed showing a large amount of aspecific binding depending on the particles preparation and concentration. In the presence of saturating concentrations of either antimycin or unlabelled NQNO (2-n-Nonyl-4-hydroxy-quinolinee-N-oxide) that remove or prevent the specific binding of 3H-NQNO, it is possible to evaluate the aspecific component of 3H-NQNO binding and to subtracte it from the experimental binding data by graphyc correction according to (3). The straight line from the corrected points gives the specific binding parameters: number of specific binding sites: about 0,5 moles 3H-NQNO/ moles cytochrome b and KD= 50 nM.  相似文献   

2.
The present work is an extension of our precedent papers (1-3). In the present report the relationship was studied between the inhibition by 3H-NQNO, 3-3H-2-n-nonyl-4-hydroxy-quinoline-N-oxide, of the respiratory activity induced in submitochondrial particles from beef heart by NADH and the binding of 3H-NQNO to the specific binding site. The experiments showed that the concentrations of inhibition sites and of specific binding sites are identical. Titrating the inhibition of NADH-oxidase activity with increasing amounts of 3H-NQNO a close connection was observed between the decrease of the respiratory activity and the increase of the specific binding of 3H-NQNO. When nearly full inhibition (85%) was reached, also the specific binding was saturated. We may conclude that 3H-NQNO behaves like an ideally simple inhibitor: the inhibition of electron transfer by 3H-NQNO is linear with the saturation of the specific binding site.  相似文献   

3.
The effects of 2-mercaptoacetate on the respiration rates induced by different substrates were studied in vitro in isolated liver mitochondria. With palmitoyl-L-carnitine or 2-oxoglutarate as the substrate, the ADP-stimulated respiration (State 3) was dose-dependently inhibited by 2-mercaptoacetate. with glutamate or succinate as the substrate. State-3 respiration was only slightly inhibited by 2-mercaptoacetate. In contrast, the oxidation rate of 3-hydroxybutyrate was competitively inhibited by 2-mercaptoacetate in both isolated mitochondria and submitochondrial particles. In uncoupled mitochondria and in mitochondria in which ATP- and GTP-dependent acyl-CoA biosynthesis was inhibited, the inhibitory effect of 2-mercaptoacetate on palmitoyl-L-carnitine oxidation was abolished; under the same conditions, however, inhibition of 3-hydroxybutyrate oxidation by 2-mercaptoacetate still persisted. These results led to the following conclusions: 2-mercaptoacetate itself enters the mitochondrial matrix, inhibits fatty acid oxidation through a mechanism requiring an energy-dependent activation of 2-mercaptoacetate and itself inhibits 3-hydroxybutyrate oxidation through a competitive inhibition of the membrane-bound 3-hydroxybutyrate dehydrogenase. This study also strongly suggests that the compound responsible for the inhibition of fatty acid oxidation is 2-mercaptoacetyl-CoA.  相似文献   

4.
The effect of octylguanidine and oligomycin on the oxygen uptake of rat liver mitochondria and on the ATPase activity of "sonic" submitochondrial particles has been studied. 1. Octylguanidine inhibits state 3 respiration with glutamate-malate and succinate as substrates, but much lower concentrations are required to inhibit oxygen uptake with the former substrates. State 4 respiration is unaffected by octylguanidine. 2. The titration-curve for the octylguanidine inhibition of glutamate-malate oxidation is hyperbolic and apparently biphasic, half-maximal inhibition is obtained at 30 muM octylguanidine. The octylguanidine-curve for inhibition of succinate oxidation is sigmoid with half-maximal inhibition at about 250 muM. 3. Octylguanidine and oligomycin show additive inhibitory action on state 3 respiration with both glutamate plus malage and succinate as respiratory substrates. 4. Concentrations of oligomycin or octylguanidine, which added separately are ineffective on state 3 respiration, become inhibitory when the two inhibitors are added together. 5. Octylguanidine inhibits the ATPase activity of sonic submitochondrial particles with a hyperbolic titration-curve analogous to that obtained for oligomycin inhibition. The inhibitory actions of octylguanidine and oligomycin on the ATPase activity are additive. 6. It is concluded that octylguanidine acts directly on the ATPase complex and that its binding at the action site is mutually exclusive with the binding of oligomycin. A kinetic explanation is given for the reported higher sensitivity of site I phosphorylation to octylguanidine.  相似文献   

5.
The effect of phloretin on respiration by isolated mitochondria and submitochondrial particles was studied. In submitochondrial particles, both NADH- and succinate-dependent respiration was inhibited by phloretin. 50% maximum inhibition was reached at phloretin concentrations of 0.1 mM (NADH oxidation) and 0.7 mM (succinate oxidation). In isolated mitochondria, phloretin inhibited glutamate oxidation in both State 3 and State 4; 50% maximum inhibition occurred at about 30 microM. Succinate oxidation is inhibited in State 3 by phloretin, inhibition being half its maximum value at 0.5 mM, but in State 4 it is stimulated about 2-fold by phloretin at a concentration of 0.6 mM. Ascorbate oxidation is stimulated in both State 3 and State 4, maximum stimulation being equal to that obtained with an uncoupler of oxidative phosphorylation. Under all circumstances, phloretin lowered the transmembrane electrical potential difference in isolated mitochondria. These results are discussed in terms of mosaic non-equilibrium thermodynamics. We conclude that phloretin is both an uncoupler and an inhibitor of oxidative phosphorylation.  相似文献   

6.
Several open-chained analogues of UK-2A, a novel antifungal antibiotic isolated from Streptomyces sp. 517-02, were prepared for structure-activity studies. The in vitro antifungal activities of these compounds against Rhodotorula mucilaginosa IFO 0001 and the inhibition of uncoupler-stimulated respiration in bovine heart submitochondrial particles (SMP) were evaluated. Oxidative potentials were measured by cyclic voltammetry. An analogue prepared from dihexyl L-glutamate showed comparable inhibitory activity as UK-2A.  相似文献   

7.
1. Formate inhibits cytochrome c oxidase activity both in intact mitochondria and submitochondrial particles, and in isolated cytochrome aa3. The inhibition increases with decreasing pH, indicating that HCOOH may be the inhibitory species. 2. Formate induces a blue shift in the absorption spectrum of oxidized cytochrome aa3 (a3 + a33+) and in the half-reduced species (a2 + a33+). Comparison with cyanide-induced spectral shifts, towards the red, indicates that formate and cyanide have opposite effects on the aa3 spectrum, both in the fully oxidized and the half-reduced states. The formate spectra provide a new method of obtaining the difference spectrum of a32+ minus a33+, free of the difficulties with cyanide (which induces marked high leads to low spin spectral shifts in cytochrome a33+) and azide (which induces peak shifts of cytochrome a2+ towards the blue in both alpha- and Soret regions). 3. The rate of formate dissociation from cytochrome a2+ a33+ -HCOOH is faster than its rate of dissociation from a3+ a33+ -HCOOH, especially in the presence of cytochrome c. The Ki for formate inhibition of respiration is a function of the reduction state of the system, varying from 30 mM (100% reduction) to 1 mM (100% oxidation) at pH 7.4, 30 degrees C. 4. Succinate-cytochrome c reductase activity is also inhibited by formate, in a reaction competitive with succinate and dependent on [formate]2. 5. Formate inhibition of ascorbate plus N, N, N', N'-tetramethyl-p-phenylenediamine oxidation by intact rat liver mitochondria is partially released by uncoupler addition. Formate is permeable through the inner mitochondrial membrane and no differences in 'on' or 'off' inhibition rates were observed when intact mitochondria were compared with submitochondrial particles. 6. NADH-cytochrome c reductase activity is unaffected by formate in submitochondrial particles, but mitochondrial oxidation of glutamate plus malate is subject both to terminal inhibition at the cytochrome aa3 level and to a slow extra inhibition by formate following uncoupler addition, indicating a third site of formate action in the intact mitochondrion.  相似文献   

8.
The effects of spegazzinine, a dihydroindole alkaloid, on mitochondrial oxidative phosphorylation were studied.Spegazzinine inhibited coupled respiration and phosphorylation in rat liver mitochondria. The I50 was 120 μM. Uncouplers released the inhibition of coupled respiration. Arsenate-stimulated mitochondrial respiration was partially inhibited by spegazzinine. The stimulation of mitochondrial respiration by Ca2+ and the proton ejection associated with the ATP-dependent Ca2+ uptake were not affected by the alkaloid.Oxidative phosphorylation and the Pi-ATP exchange reaction of phosphorylating beef heart submitochondrial particles were strongly inhibited by spegazzinine (I50, 50 μM) while the ATP-dependent reactions, reduction of NAD+ by succinate and the pyridine nucleotides transhydrogenase were less sensitive (I50, 125 μM). Oxygen uptake by submitochondrial particles was not affected.The 2,4-dinitrophenol-stimulated ATPase activity of rat liver mitochondria was not affected by 300 μM spegazzinine, a concentration of alkaloid that completely inhibited phosphorylation. However, higher concentrations of spegazzinine did partially inhibit it. The ATPase activities of submitochondrial particles, insoluble and soluble ATPases were also partially inhibited by high concentrations of spegazzinine.The inhibitory properties of spegazzinine on energy transfer reactions are compared with those of oligomycin, aurovertin and dicyclohexylcarbodiimide. It is concluded that spegazzinine effects are very similar to the effects of aurovertin and that its site of action may be the same or near the site of aurovertin.  相似文献   

9.
The uptake of ethidium bromide by rat liver mitochondria and its effect on mitochondria, submitochondrial particles, and F1 were studied. Ethidium bromide inhibited the State 4-State 3 transition with glutamate or succinate as substrates. With glutamate, ethidium bromide did not affect State 4 respiration, but with succinate it induced maximal release of respiration. These effects appear to depend on the uptake and concentration of the dye within the mitochondrion. In submitochondrial particles, the aerobic oxidation of NADH is much more sensitive to ethidium bromide than that of succinate. Ethidium bromide partially inhibited the ATPase activity of submitochondrial particles and of a soluble F1 preparation. Ethidium bromide behaves as a lipophilic cation which is concentrated through an energy-dependent process within the mitochondria, producing its effects at different levels of mitochondrial function. The ability of mitochondria to concentrate ethidium bromide may be involved in the selectivity of the dye as a mitochondrial mutagen.  相似文献   

10.
L Smith  H C Davies  M E Nava 《Biochemistry》1980,19(8):1613-1617
Adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and inorganic pyrophosphate partially inhibit the oxidation of exogenous cytochrome c by cytochrome c oxidase of submitochondrial particles (with or without detergent treatment) or by a purified preparation when it is assayed polarographically in buffers of nonbinding ions at pH 7.8. ATP is somewhat more inhibitory than ADP. The inhibition is never greater than 50%, and it is always less than an equal concentration of Mg2+ ions is present or when the assays are run at pH 6. In contrast, the effect of ATP, ADP, and pyrophosphate on oxidase assays run spectrophotometrically is a similar slight stimulation of the oxidase of submitochondrial particles treated with deoxycholate and little or no effect on purified oxidase. The reaction of the oxidase of submitochondrial particles with the endogenous cytochrome c is stimulated by the nucleotides, as is the reduced nicotinamide adenine dinucleotide (NADH) oxidase activity. The observations can be explained by binding of ATP, ADP, or pyrophosphate to cytochrome c so that the formation of an especially reactive combination of cytochrome c and cytochrome oxidase previously postulated [Smith, L., Davies, H. C., & Nava, M. E. (1979) Biochemistry 18, 3140] is prevented. The data give no evidence that respiration via cytochrome c oxidase is regulated physiologically by direct effects of ATP or ADP on its activity.  相似文献   

11.
1. Citreoviridin was a potent inhibitor of the soluble mitochondrial ATPase (adenosine triphosphatase) similar to the closely related aurovertins B and D. 2. Citreoviridin inhibited the following mitochondrial energy-linked reactions also: ADP-stimulated respiration in whole mitochondria from ox heart and rat liver; ATP-driven reduction of NAD+ by succinate; ATP-driven NAD transhydrogenase and ATPase from ox heart submitochondrial particles. 3. The dissociation constant (KD) calculated by a simple law-of-mass-action treatment for the citreoviridin--ATPase complex was 0.5--4.2micron for ox-heart mitochondrial preparations and 0.15micron for rat liver mitochondria. 4. Monoacetylation of citreoviridin decreased its inhibitory potency (KD=2--25micron, ox heart; KD=0.7micron, rat liver). Diacetylation greatly decreased the inhibitory potency (KD=60--215micron, ox heart). 5. Hydrogenation of citreoviridin monoacetate diminished its inhibitory potency considerably. 6. No significant enhancement of fluorescence was observed when citreoviridin interacted with the mitochondrial ATPase.  相似文献   

12.
Acetonitrile extracts of cigarette tar inhibit state 3 and state 4 respiration of intact mitochondria. Exposure of respiring submitochondrial particles to acetonitrile extracts of cigarette tar results in a dose-dependent inhibition of oxygen consumption and reduced nicotinamide adenine dinucleotide (NADH) oxidation. This inhibition was not due to a solvent effect since acetonitrile alone did not alter oxygen consumption or NADH oxidation. Intact mitochondria are less sensitive to extracts of tar than submitochondrial particles. The NADH-ubiquinone (Q) reductase complex is more sensitive to inhibition by tar extract than the succinate-Q reductase and cytochrome complexes. Nicotine or catechol did not inhibit respiration of intact mitochondria. Treatment of submitochondrial particles with cigarette tar results in the formation of hydroxyl radicals, detected by electron spin resonance (ESR) spin trapping. The ESR signal attributable to the hydroxyl radical spin adduct requires the presence of NADH and is completely abolished by catalase and to a lesser extent superoxide dismutase (SOD). Catalase and SOD did not protect the mitochondrial respiratory chain from inhibition by tar extract, indicating that the radicals detected by ESR spin trapping are not responsible for the inhibition of the electron transport. We propose that tar causes at least two effects: (1) Tar components interact with the electron transport chain and inhibit electron flow, and (2) tar components interact with the electron transport chain, ultimately to form hydroxyl radicals.  相似文献   

13.
A continuous flow device utilizing a Clark oxygen electrode was constructed; this device had a dead time and resolution of 1 ms. Mixing was tested by observing the neurtralization of acid with base, and at the maximal flow rate, the mixing was 94% complete within 1 ms and better than 98% complete within 2 ms after initial mixing. Observation o of the oxygenation of hemoglobin gave data which agreed with previous data obtained by a stopped-flow optical experiment. The respiration of phosphorylating submitochondrial particles was measured utilizing this device. The burst of respiration in submitochondrial particles was triphasic, with a very rapid burst lasting some 60 ms, followed by a longer burst of respiration lasting more than 4 s.  相似文献   

14.
Alkylguanidines inhibit the respiration of submitochondrial particles oxidizing NADH, while hydrophilic guanidines stimulate the rate of oxygen uptake. Regardless of the effect that a guanidine exerts on respiration, all guanidines tested inhibited the stimulatory action of K+ on the oxygen uptake of submitochondrial particles. It was found also that octylguanidine modified the Arrhenius plot of respiration of the particles. These findings suggest that alkylguanidines exert their action through the interaction of the alkyl chain with a hydrophobic region in the membrane and also through the interaction of the guanidine moiety with a certain locus in the membrane.The results of studies made on the effect of a wide variety of cations on the respiration of submitochondrial particles may be explained on the assumption that in the inner membrane of the mitochondria exists a negatively charged surface or region with which cations can interact. These results also suggest that the stimulation or inhibition of respiration induced by a given cation depends on the ease with which it can move within this hypothetical negative region.  相似文献   

15.
The effects on mitochondrial respiration and complex I NADH oxidase activity of cubebin and derivatives were evaluated. The compounds inhibited the state 3 glutamate/malate-supported respiration of hamster liver mitochondria with IC(50) values ranging from 12.16 to 83.96 microM. NADH oxidase reaction was evaluated in submitochondrial particles. The compounds also inhibited this activity, showing the same order of potency observed for effects on state 3 respiration, as well as a tendency towards a non-competitive type of inhibition (K(I) values ranging from 0.62 to 16.1 microM). A potential binding mode of these compounds with complex I subunit B8, assessed by docking calculations, is proposed.  相似文献   

16.
Nitrous oxide affects dioxygen utilization by both bean seed and bovine heart submitochondrial particles when either succinate or reduced cytochrome c are used as substrates. Bovine heart particles exhibit reversible, dose-dependent partial inhibition of respiratory activity when exposed to N2O. Bean seed particle respiration is stimulated by low levels of N2O, but higher concentrations are inhibitory. These findings can be explained in terms of one locus of anesthetic action: cytochrome c oxidase, the terminal component of the mitochondrial respiratory chain. Alterations in respiration rates are expected to make important contributions to anesthesia in animals and to control of germination in plants.  相似文献   

17.
1. The oligomycin-sensitive ATPase activity of submitochondrial particles of the glycerol-grown "petite-negative" yeast: Schizosaccharomyces pombe is markedly stimulated by incubation at 40 degrees C and by trypsin activations are treatment. Both increased in Triton-X 100 extracts of the submitochondrial particles. 2. A trypsin-sensitive inhibitory factor of mitochondrial ATPase with properties similar to that of beef heart has been extracted and purified from glycerol-grown and glucose-grown S. pombe wild type, from the nuclear pleiotropic respiratory-deficient mutant S. pombe M126 and from Saccharomyces cerevisiae. 3. ATPase activation by heat is more pronounced in submitochondrial particles isolated from glycerol-grown than from glucose-grown S. pombe. An activation of lower extent is observed in rat liver mitochondrial particles but is barely detectable in the "petite-positive" yeast: S. cerevisiae. No activation but inhibition by heat is observed in the pleitotropic respiratory-deficient nuclear mutant S. pombe M126. 4. The inhibition of S. pombe ATPase activity by low concentrations of dicyclohexylcarbodiimide dissapears at inhibitor concentrations above 25 muM. In Triton-extract of submitochondrial particles net stimulation of ATPase activity is observed at 100 muM dicyclohexylcarbodiimide. The pattern of stimulation of ATPase activity by dicyclohexylcarbodiimide in different genetic and physiological conditions parallels that produced by heat and trypsin. A similar mode of action is therefore proposed for the three agents: dissociation or inactivation of an ATPase inhibitory factor. 5. We conclude that "petite-positive" and "petite-negative" yeasts contain an ATPase inhibitor factor with properties similar to those of the bovine mitochondrial ATPase inhibitor. The expression of the ATPase inhibitor, measured by ATPase activation by heat, trypsin or high concentrations of dicyclohexylcarbodiimide, is sensitive to alterations of the hydrophobic membrane environment and dependent on both physiological state and genetic conditions of the yeast cells.  相似文献   

18.
1. DL-8-Methyldihydrolipoate was shown to be a potent inhibitor of mitochondrial oxidative phosphorylation and ATP-driven energy-linked reactions. 2. ADP-stimulated respiration utilizing pyruvate + malate and succinate in both ox heart and rat liver mitochondria is inhibited; oxidative phosphorylation using pyruvate + malate, succinate and ascorbate + NNN'N'-tetramethyl-p-phenylenediamine as substrates is also inhibited; uncoupler-stimulated respiration is unaffected regardless of the substrate used. 3. Mitochondrial oligomycin-sensitive adenosine triphosphatase is inhibited in both the membrane-bound form and the purified detergent-dispersed preparation. 4. ATP-driven transhydrogenase and the ATP-driven energy-linked reduction of NAD+ by succinate in ox heart submitochondrial particles are inhibited, whereas the respiratory-chain-driven transhydrogenase is unaffected. 5. DL-8-Methyl-lipoate has no immediate effect on the above reactions, demonstrating the requirement for the reduced form for inhibition. 6. The inhibitory properties of DL-8-methyldihydrolipoate are analogous to those of oligomycin and provide further evidence of a role for lipoic acid in oxidative phosphorylation.  相似文献   

19.
The effects of cobalt and copper complexes with o-phenantroline on the respiratory activity of mitochondria from pea sprouts and submitochondrial particles from bovine heart and on the oxidative phosphorylation in mitochondria were studied. The catalytic activity of the complexes in several components of the respiratory chain autooxidation reactions was investigated. It was shown that the bis (o-phenantroline) cobalt (II) chloride complex is more active in exidation of NADH. The tris (o-phenantroline) cobolt (III) perchlorate complex stimulates the respiratory activity of mitochondria and submitochondrial particles. Possible localization of the effect of this complex was postulated. The (o-phenantroline) copper chloride complex completely inhibits the succinate-dependent respiration of submitochondrial particles and causes disturbances in oxidative phosphorylation of mitochondria.  相似文献   

20.
G D Case  T Ohnishi    J S Leigh  Jr 《The Biochemical journal》1976,160(3):785-795
E.p.r. (electron-paramagnetic-resonance) spectra of ubisemiquinone (QH) organic radicals and all of the known iron-sulphur centres were studied in normal and 'nickle-plated' pigeon heart mitochondria, submitochondrial particles and submitochondrial particles from which succinate dehydrogenase had been removed. Incubation of pigeon heart mitochondria, submitochondrial particles or succinate dehydrogenase-depleted submitochondrial particles with substrate in the presence of pure O2 results in the accumulation of Q-H. In mitochondria, the e.p.r. spectrum of Q-H is characterized by in-homogeneous line broadening. A heterogeneous population of semiquinones appears to be partly responsible for these effects in mitochondria. Additon of Ni(II) to mitochondria renders saturation of the Q-H resonance more difficult. On the other hand, the resonance in either submitochondrial particles or succinate dehydrogenase-depleted particles is narrower than the same spectrum in mitochondria, and saturates like a homogeneous line. The presence of Ni(II) in either of these preparations, further, has no effect on either the A-H spectrum or the saturation curve. Therefore QH appears to be situated on the exterior surface of the mitochondrion. Likewise, the e.p.r. spectra and saturation curves of iron-sulphur centre N-2 exhibit characteristics of inhomogeneous line broadening, not only in intact mitochondria but also in both submitochondrial particles and succinate dehydrogenase-depleted particles. Because of the small pool size of centre N-2, this effect is likely to arise from a spin interaction with some other component in the membrane. Ni(II) has no effect on the saturation in centre N-2 in mitochondria or submitochondrial particles, and only a marginal effect in the succinate dehydrogenase-depleted preparation. These results are indeterminate with respect to the position of centre N-2 in the membrane; but suggest that its distance from the succinate dehydrogenase binding site is on the order of 1 nm. All of the other ferredoxin-type iron-sulphur centres in both preparations were not affected by paramagnetic ions. Homogeneous e.p.r. spectra and saturation curves are observed for both of the HiPIP-type (high-potential iron-sulphur protein-type) iron-sulphur centres in mitochondrial centres S-3 and bc-3. Addition of No(II) to intact mitochondria results in a dipolar interaction with centre bc-3. No effect was observed on centre S-3 in either preparation. A comprehensive model is presented for the structure of the respiratory electron-transport system in mitochondria, based on e.p.r. relaxation studies in the present and the preceding paper. There is no direct evidence for transmembrane electron flow through any of the known energy-coupling sites in mitochondria, so that direct hydrogen atom transfer across the membrane (as a combination of H+ translocation coupled to electron flow) does not occur...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号