首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The process of TNF-induced cytotoxicity is complex but appears to be mediated through a TNF-specific cell surface receptor. Recent evidence suggests that TNF action on tumor cells may be antagonized by epidermal growth factor (EGF) and other EGF-receptor modulatory peptides implicating a role for EGF-R in the process of TNF-induced cytotoxicity. In the present report, we investigated the biochemical actions of TNF on several biochemical events known to occur in the process of EGF signal transduction in intact cells. The actions of TNF were compared directly to those of EGF in both TNF-sensitive and -resistant tumor cell lines. In TNF-sensitive ME-180 cervical carcinoma cells, TNF (20 ng/ml) stimulated the tyrosine protein kinase activity of the EGF-receptor (EGF-R) fivefold when measured by receptor autophosphorylation in an immune complex kinase assay. TNF activation of EGF-R kinase activity in ME-180 was measurable 10 min after TNF incubation and enzymatic activity remained elevated 20 min after TNF addition. Activation of the receptor by TNF correlated with increased 32P incorporation into EGF-R protein when receptor was immunoprecipitated from 32P-equilibrated cells following a 20 min incubation with TNF. Acid hydrolysis of EGF-R protein isolated from TNF-treated ME-180 cells demonstrates an increase in the phosphotyrosine content of EGF-R when compared to receptor isolated from untreated cells. The results suggest that TNF increased EGF-R tyrosine protein kinase activity and the state of EGF-receptor tyrosine phosphorylation in a manner similar to that reported for EGF. However, TNF does not appear to be structurally related to EGF since TNF was unable to directly activate EGF-R when incubated with extensively washed immunoprecipitates of EGF-R. In TNF-resistant T24 bladder carcinoma cells, TNF failed to alter EGF-R tyrosine protein kinase activity although both EGF and phorbol ester were shown to modulate the enzymatic activity of the receptor in these cells. These results indicate that the ability of TNF to modulate EGF-R kinase in target cells may correlate with its cytotoxic actions on TNF-sensitive tumor cells. Other biochemical activities associated with the induction or regulation of cellular growth were examined in TNF- or EGF-treated tumor cells. EGF stimulated a rapid 8-16-fold increase in the expression of the proto-oncogene c-myc when analyzed by dot-blot analysis of total cellular RNA or Northern blot hybridization of polyadenylated RNA. TNF treatment failed to alter c-myc expression in ME-180 cells when analyzed by either technique.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Mammary epithelial cells were isolated from mid-pregnant BALB/c mice, grown within collagen gels and maintained on DME/F12 (1:1) media containing 10% bovine calf serum and 10 μ/ml insulin. Initial time-course and dose-response studies showed that epidermal growth factor (EGF)-induced autophosphorylation of the EGF-receptor (EGF-R) in these cells was maximal 5 min after exposure to 75 ng/ml EGF. Mammary epithelial cells displaying little or no growth during their first 2 days in primary culture cells were found to contain low levels of EGF-R. However, EGF-induced autophosphorylation of the EGF-R in these cells was extremely intense. Subsequent studies demonstrated that during the proliferative and plateau phases of growth, EGF-R levels progressively increased, while conversely EGF-induced autophosphorylation of the EGF-R decreased over time in primary culture. These results demonstrate that EGF-R levels and autophosphorylation do not show a direct correlation with mammary epithelial cell mitogen-responsiveness. Intense EGF-R autophosphorylation appears to be required for initiating growth, but sustained mammary epithelial cell proliferation occurs when EGF-R autophosphorylation is low. This inverse relationship between EGF-R levels and autophosphorylation may reflect changes in receptor affinity and function during the various phases of mammary epithelial cell growth in primary culture.  相似文献   

3.
It has been suggested that steroids interact with peptide hormones in part by rapid, potentially non-genomic, mechanisms. The peptide hormone epidermal growth factor (EGF) regulates cell proliferation and ion transport using ERK1/2 as downstream signal. Furthermore, the EGF-receptor (EGF-R) is involved in signaling by G-protein-coupled receptors, growth hormone and cytokines via transactivation. We show that aldosterone modulates Na(+)/H(+)-exchange in renal collecting duct-derived Madin-Darby canine kidney (MDCK) cells via ERK1/2 in a similar way as compared to growth factors. Furthermore, we tested the hypothesis that aldosterone uses the EGF-R as heterologous signal transducer in MDCK cells. Aldosterone induces a rapid increase of ERK1/2 phosphorylation and cytosolic Ca(2+)-concentration of similar extend as compared to EGF. Furthermore, aldosterone stimulates EGF-R Tyr-phosphorylation. Inhibition of EGF-R kinase abolished aldosterone-induced signaling. Aldosterone-induced Ca(2+)-influx seems to be mediated by the activation of ERK1/2, whereas ERK1/2 activation does not depend on Ca(2+)-influx. Our data show that aldosterone uses the EGF-R-ERK1/2 signaling cascade to elicit its rapid effects in MDCK cells.  相似文献   

4.
EGF induces receptor down-regulation with no receptor recycling in KB cells   总被引:3,自引:0,他引:3  
Several ligands, including epidermal growth factor (EGF), have been found to negatively modulate or down-regulate their specific plasma membrane receptors. Using both 125I-EGF and a monoclonal antibody against the EGF-receptor (EGF-R1), we studied the down-regulation of the EGF-receptor in the human adenocarcinoma cell line KB. The results presented here demonstrate that incubating KB cells at 37 degrees C with EGF rapidly decreases the number of plasma membrane EGF-receptors. In addition, there is a concomitant rise of equal magnitude in the number of EGF molecules taken up. The latter result argues strongly that there is negligible recycling of the EGF-receptor in KB cells and that the major portion of internalized EGF-receptor complexes are transported to lysosomes and subsequently degraded. The fate of the EGF-receptor is markedly different from that of receptors not subject to down-regulation. The biochemical signals that operate to regulate such diverse receptor traffic in cells remains to be elucidated.  相似文献   

5.
6.
The cytosolic liver-specific growth factor-hepatic stimulator substance (HSS) has been shown to be able to amplify the rat hepatkocyte proliferation responded to BGF.In order to get more insight into the mechanism,the regulatory effect of HSS on EGF-receptor (EGF-R) and the receptor phosphorylation at molecular level was studied.HSS partially purified from weanling rat liver was given to cultured hepatocytes and its influence on EGF-R specific binding and internalization as well as mRNA expression were investigated.The results showed that preincubation of hepatocytes with HSS could lead to an increase in [^125I]-EGF binding to its receptors and inhibit EGF-induced receptor down-regulation.Furthermore,the overexpression of EGF-R mRNA stimulated by HSS was seen during 2-12 h after the incubation.Additionally,it was demonstrated with human hepatoma SMMC-7721 cells in Western blot that the EGF-R expression and the receptor autophosphorylation were increased with dose/timedependency after HSS treatment.These results strongly suggest that the mechanism of HSS action on hepatocyte growth might be related to its modulation on EGF-R and receptor-mediated signaling transfuction.  相似文献   

7.
It has been shown elsewhere that the epidermal growth factor (EGF) in A431 cells can recycle in receptor-bound state (Teslenko et al., 1987; Sorkin et al., 1989, 1991). Present study deals with the action of primaquine, a lysosomotropic agent, on EGF-receptor complexes (EGF-RC). By the method of indirect immunofluorescence with anti-EGF-R monoclonal antibody it is found that following a 1 h incubation of cells at 37 degrees C in the presence of EGF a bright staining of endosomes appears in the intranuclear region, while after incubation of the cells at 4 degrees only margins of cells are stained. Such a pattern of fluorescence is peculiar of endocytosis in A431 cells. When the cells were incubated in the presence of a 0.3 mM primaquine for 1 h, the immunostaining is changed: bright compact spot in the para-Golgi region appeared. The effect of primaquine is reversible. When the cells after preincubation with EGF were incubated in the absence of EGF for 3 h at 37 degrees C, the staining of cell margins could be observed again, demonstrating the recycling of EGF-RC. Under similar conditions of cell incubation, but in the presence of primaquine, the staining of the para-Golgi region was not changed. In the experiments with 125I-EGF it was shown that intracellular accumulations of 125I-EGF were maintained when the cells were incubated in the presence of 0.3 mM primaquine. It is concluded that primaquine inhibits the recycling of EGF-R in A431 cells.  相似文献   

8.
9.
Epidermal growth factor (EGF) is a potent mitogen for normal mouse mammary epithelial cells grown in primary culture. EGF activation of the EGF-receptor (EGF-R) induces intrinsic tyrosine kinase activity which results in EGF-R autophosphorylation and tyrosine phosphorylation of other intracellular substrates involved in EGF-R signal transduction. Genistein and erbstatin are anticancer agents which have been shown to be potent tyrosine kinase inhibitors. However, the effects of these compounds in modulating EGF-dependent normal mammary epithelial cell proliferation is presently unknown. Therefore, studies were conducted to determine the effects of genistein and erbstatin on EGF-dependent proliferation, and EGF-R levels and autophosphorylation in normal mouse mammary epithelial cells grown in primary culture and maintained in serum-free media. Chronic treatment with 6.25–100 μM genistein or 1–16 μM erbstatin significantly decreased EGF-dependent mammary epithelial cell proliferation in a dose-responsive manner. However, the highest doses of genistein (100 μM ) and erbstatin (16 μM ) were found to be cytotoxic. Additional studies showed that acute treatment with 6.25–400 μM genistein did not affect EGF-R levels or EGF-induced EGF-R autophosphorylation, while acute treatment with 1–64 μM erbstatin caused a slight reduction in EGF-R levels, but had no effect on EGF-dependent EGF-R autophosphorylation in these cells. In contrast, chronic treatment with similar doses of genistein or erbstatin resulted in a large dose-responsive decrease in EGF-R levels, and a corresponding decrease in total cellular EGF-R autophosphorylation intensity. These results demonstrate that the inhibitory effects of chronic genistein and erbstatin treatment on EGF-dependent mammary epithelial cell proliferation is not due to a direct inhibition of EGF-R tyrosine kinase activity, but results primarily from a down-regulation in EGF-R levels and subsequent decrease in mammary epithelial cell mitogenic-responsiveness to EGF stimulation.  相似文献   

10.
11.
12.
13.
14.
Overexpression of EGF receptors and constitutive cyclin D1 expression are frequently associated with human squamous carcinomas. We have now investigated whether these parameters influence susceptibility to okadaic acid induced cell death in EGF-receptor overexpressing mutant p53 A431 human carcinoma. Exposure of these cells to 20 nM okadaic acid induced apoptosis-associated caspase 3 activation, DNA fragmentation, cleavage of Poly ADP-Ribose Polymerase (PARP), p53-independent expression of pro-apoptotic bax, and loss of proliferation-promoting cyclin D1. All these alterations were antagonized by concurrent addition of exogenous EGF. Ectopic overexpression of the cyclin D1 gene in A431 carcinoma conferred resistance to 20 nM okadaic acid irrespective of exogenous EGF, associated with a parallel induction of anti-apoptotic bcl-2. Treatment with a subtoxic concentration of a bispecific bcl-2/bcl xL antisense oligonucleotide cooperated with okadaic acid to down-regulate bcl-2 and sensitize cyclin D1-overexpressing cells to okadaic acid. Although EGF protects EGF-R proficient epithelial cells from diverse apoptotic stimuli through Mcl-1, this is the first report demonstrating that cyclin D1 overexpression provides an EGF independent protection from okadaic acid-induced cell death through induction of bcl-2. We also show that this anti-apoptotic effect of cyclin D1 overexpression, can be partly antagonized with antisense strategies that down-regulate anti-apoptotic bcl-2 family members.  相似文献   

15.
EGF-R [EGF (epidermal growth factor) receptor] ligands can promote or inhibit cell growth. The biological outcome of receptor activation is dictated, at least in part, by ligand-specified patterns of endocytic trafficking. EGF-R trafficking downstream of the ligands EGF and TGF-alpha (transforming growth factor-alpha) has been investigated extensively. However, less is known about EGF-R fates induced by the ligands BTC (betacellulin) and AR (amphiregulin). We undertook comparative analyses to identify ligand-specific molecular events that regulate EGF-R trafficking and degradation. EGF (17 nM) and BTC (8.5 nM) induced significant EGF-R degradation, with or without ectopic expression of the ubiquitin ligase Cbl. Human recombinant AR (17 nM) failed to affect receptor degradation in either case. Notably, levels of ligand-induced EGF-R ubiquitination did not correlate strictly with receptor degradation. Dose-response experiments revealed that AR at a saturating concentration was a partial agonist at the EGF-R, with approx. 40% efficacy (relative to EGF) at inducing receptor tyrosine phosphorylation, ubiquitination and association with Cbl. EGF-R down-regulation and degradation also were compromised upon cell stimulation with AR (136 nM). These outcomes correlated with decreased degradation of the Cbl substrate and internalization inhibitor hSprouty2. Downstream of the hSprouty2 checkpoint in AR-stimulated cells, Cbl-free EGF-R was incorporated into endosomes from which Cbl-EGF-R complexes were excluded. Our results suggest that the AR-specific EGF-R fate results from decreased hSprouty2 degradation and reduced Cbl recruitment to underphosphorylated EGF-R, two effects that impair EGF-R trafficking to lysosomes.  相似文献   

16.
Endocytosis of the epidermal growth factor (EGF) was investigated in three cell lines--A431, 3T6 and Swiss 3T3--after their incubation with cytochalasin B (CB). CB was introduced into culture medium (10 mkg/ml) 1.5-2 hours before addition of 125I-EGF (20-40 ng/ml). The label uptake rate was measured after a 35-40 minutes incubation of cells with 125I-EGF. It appeared that disorganization of microfilamentous network caused by CB exerted no influence on the binding of EGF to the surface membrane receptors and its internalization. Nevertheless, the experiments performed on A431 cells using a fluorescent label--rhodamine--bound to EGF (EGF-R) indicate that CB, though not influencing the initial steps of endocytosis, inhibits the next step--the intracellular transport of EGF-receptor complexes from the trans-Golgi region to lysosomes. As was shown elsewhere (Barkan, Nikol'sky, 1986), CB inhibits the mitogenic effect of EGF on resting Swiss 3T3 cells. So, the process of EGF-receptor uptake and delivery to the trans-Golgi region is evidently not enough to stimulate the cell proliferation; next steps of transport and degradation of ligand-receptor complexes are presumably needed.  相似文献   

17.
The EGF-receptor (EGF-R) is a transmembrane glycoprotein with intrinsic protein tyrosine kinase (TK) activity. To explore the importance of the receptor TK in the action of EGF, we have used transfected NIH-3T3 cells expressing either the normal human EGF-R or a receptor mutated at Lys721, a key residue in the presumed ATP-binding region. The wild-type receptor responds to EGF by causing inositol phosphate formation, Ca2+ influx, activation of Na+/H+ exchange and DNA synthesis. In contrast, the TK-deficient mutant receptor fails to evoke any of these responses. It is concluded that activation of the receptor TK is a crucial signal that initiates the multiple post-receptor effects of EGF leading to DNA synthesis. Furthermore, the results suggest that tyrosine phosphorylation plays a role in the activation of the phosphoinositide signalling system.  相似文献   

18.
In previous studies [Gut 35 (1994) 896-904], we demonstrated that antacid talcid (TAL) accelerates gastric ulcer healing and provides better quality of mucosal restoration within the scar than the omeprazole (OME). However, the mechanisms of TAL-induced ulcer healing are not clear. Since growth factors promote cell proliferation, re-epithelization, angiogenesis and ulcer healing, we studied whether TAL and/or OME affect expression of epidermal growth factor (EGF) and its receptors (EGF-R) in both normal and ulcerated gastric mucosae. Rats with or without acetic acid-induced gastric ulcers (n = 64) received i.g. twice daily 1 mL of either: A) placebo (PLA); B) TAL 100 mg; or C) OME 50 mg x kg(-1) for 14 d. Studies of gastric specimens: 1) ulcer size; 2) quantitative histology; 3) expression of EGF mRNAs was determined by RT/PCR; 4) gastric sections were immunostained with antibodies against EGF and its receptors. In non-ulcerated gastric mucosa of placebo or omeprazole treated group, EGF expression was minimal, while EGF-R was localized to few cells in the mucosal proliferative zone. Gastric ulceration triggered overexpression of EGF and its receptor in epithelial cells of the ulcer margin and scar. In ulcerated gastric mucosa TAL treatment significantly enhanced (versus PLA and omeprazole) expression of EGF and EGF-R. OME treatment reduced expression of EGF in ulcerated mucosa by 55 +/- 2% (P < 0.01). It is concluded that: 1) treatment with TAL activates genes for EGF and its receptor in normal and ulcerated gastric mucosae; 2) since EGF promotes growth of epithelial cells and their proliferation and migration, the above actions of TAL provide the mechanism for its ulcer healing action and improved (versus OME) quality of mucosal restoration.  相似文献   

19.
The epidermal growth factor receptor (EGF-R) plays an important role in development and cell differentiation, and homologues of EGF-R have been identified in a broad range of vertebrate and invertebrate organisms. This work concerns the functional characterization of SER, the EGF-R-like molecule previously identified in the helminth parasite Schistosoma mansoni. Transactivation assays performed in epithelial Madin-Darby canine kidney cells co-transfected with SER and a Ras-responsive reporter vector indicated that SER was able to trigger a Ras/ERK pathway in response to human epidermal growth factor (EGF). These results were confirmed in Xenopus oocytes showing that human EGF induced meiosis reinitiation characterized by germinal vesicle breakdown in SER-expressing oocytes. Germinal vesicle breakdown induced by EGF was dependent on receptor kinase activity and shown to be associated with phosphorylation of SER and of downstream ERK proteins. (125)I-EGF binding experiments performed on SER-expressing oocytes revealed high affinity (2.9 x 10(-9) M) of the schistosome receptor for human EGF. Phosphorylation of the native SER protein present in S. mansoni membranes was also shown to occur upon binding of human EGF. These data demonstrate the ability of the SER schistosome receptor to be activated by vertebrate EGF ligands as well as to activate the classical ERK pathway downstream, indicating the conservation of EGF-R function in S. mansoni. Moreover, human EGF was shown to increase protein and DNA synthesis as well as protein phosphorylation in parasites, supporting the hypothesis that host EGF could regulate schistosome development. The possible role of SER as a receptor for host EGF peptides and its implication in host-parasite signaling and parasite development are discussed.  相似文献   

20.
We have characterized the expression of transforming growth factor alpha (TGF alpha) and its receptor, the epidermal growth factor receptor (EGF-R), in normal and malignantly transformed human mammary epithelial cells. Human mammary epithelial cells were derived from a reduction mammoplasty (184), immortalized by benzo-a-pyrene (184A 1N4), and further transformed by the oncogenes simian virus 40 T (SV40 T), v-Ha-ras, and v-mos alone or in combination using retroviral vectors. 184 and 184A 1N4 cells require EGF for anchorage-dependent clonal growth. In mass culture, they secrete TGF alpha at high concentrations and exhibit an attenuated requirement for exogenous EGF/TGF alpha. SV40 T transformed cells have 4-fold increased EGF-R, have acquired the ability to clone in soft agar with EGF/TGF alpha supplementation, but are not tumorigenic. Cells transformed by v-mos or v-Ha-ras are weakly tumorigenic and capable of both anchorage dependent and independent growth in the absence of EGF/TGF alpha. Cells transformed by both SV40 T and v-Ha-ras are highly tumorigenic, are refractory to EGF/TGF alpha, and clone with high efficiency in soft agar. The expression of v-Ha-ras is associated with a loss of the high (but not low) affinity binding component of the EGF-R. Malignant transformation and loss of TGF alpha/EGF responsiveness did not correlate with an increase in TGF alpha production. Thus, TGF alpha production does not appear to be a tumor specific marker for human mammary epithelial cells. Differential growth responses to EGF/TGF alpha, rather than enhanced production of TGF alpha, may determine the transition from normal to malignant human breast epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号