首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tau hyperphosphorylation precedes neuritic lesion formation in Alzheimer's disease, suggesting it participates in the tau fibrillization reaction pathway. Candidate tau protein kinases include members of the casein kinase 1 (CK1) family of phosphotransferases, which are highly overexpressed in Alzheimer's disease brain and colocalize with neuritic and granulovacuolar lesions. Here we characterized the contribution of one CK1 isoform, Ckidelta, to the phosphorylation of tau at residues Ser202/Thr205 and Ser396/Ser404 in human embryonic kidney 293 cells using immunodetection and fluorescence microscopy. Treatment of cells with membrane permeable CK1 inhibitor 3-[(2,3,6-trimethoxyphenyl)methylidenyl]-indolin-2-one (IC261) lowered occupancy of Ser396/Ser404 phosphorylation sites by >70% at saturation, suggesting that endogenous CK1 was the major source of basal phosphorylation activity at these sites. Overexpression of Ckidelta increased CK1 enzyme activity and further raised tau phosphorylation at residues Ser202/Thr205 and Ser396/Ser404 in situ. Inhibitor IC261 reversed tau hyperphosphorylation induced by Ckidelta overexpression. Co-immunoprecipitation assays showed direct association of tau and Ckidelta in situ, consistent with tau being a Ckidelta substrate. Ckidelta overexpression also produced a decrease in the fraction of bulk tau bound to detergent-insoluble microtubules. These results suggest that Ckidelta phosphorylates tau at sites that modulate tau/microtubule binding, and that the expression pattern of Ckidelta in Alzheimer's disease is consistent with it playing an important role in tau aggregation.  相似文献   

2.
Amyloid protein (Abeta1-40) aggregation and conformation was examined using native and sodium dodecyl sulfate/polyacrylamide gel electrophoresis, and the results compared with those obtained by atomic force microscopy, and with Congo red binding, sedimentation and turbidity assays. The amount of Abeta aggregation measured was different, depending upon the method used. Incubation for 15 min at pH 5.0 or in the presence of Fe2+, Cu2+ or Zn2+ did not alter the level of Abeta oligomers observed on SDS and native gels. However, the slow aggregation of Abeta to form high molecular mass species over 5 days was inhibited. In contrast, when Abeta aggregation was monitored using a Congo red binding assay or sedimentation assay, a rapid increase in Abeta aggregation was observed after incubation for 15 min at pH 5.0, or in the presence of Fe2+, Cu2+ or Zn2+. The low pH-, Zn2+- or Cu2+-induced Abeta aggregation measured in a turbidity assay was reversible. In contrast, a considerable proportion of the Abeta aggregation measured by native and SDS/PAGE was stable. Atomic force microscopy studies showed that Abeta aged at pH 5.0 or in the presence of Zn2+ produced larger looser rod-shaped aggregates than at pH 7.4. Abeta that had been aged at pH 7.4 was more cytotoxic than Abeta aged at pH 5.0. Taken together, the results suggest that Abeta oligomerizes via two mutually exclusive mechanisms to form two different types of aggregates, which differ in their cytotoxic properties.  相似文献   

3.
T Konno  K Murata  K Nagayama 《FEBS letters》1999,454(1-2):122-126
We report here a novel case of amyloid-like aggregation of a plant protein. A sweet-tasting protein, monellin, experiences an irreversible heat denaturation at pH 2.5 and 85 degrees C. Addition of 100 mM NaCl couples this process with protein aggregation. The aggregates were structured as regular fibers with approximately 10 nm width and capable of binding to Congo red, similarly to well-known amyloid fibrils. The amyloid-like aggregation process was also successfully monitored with a calorimetric method. This work supports the universality of the amyloid-like aggregation, not restricted to some special categories of protein.  相似文献   

4.
The aggregation of the microtubule-associated protein tau into paired helical filaments to form neurofibrillary tangles constitutes one of the pathological hallmarks of Alzheimer's disease. Tau is post-translationally modified by the addition of N-acetyl-d-glucosamine O-linked to several serine and threonine residues (O-GlcNAc). Previously, increased O-GlcNAcylation of tau has been shown to block the accumulation of tau aggregates within a tauopathy mouse model. Here we show that O-GlcNAc modification of full-length human tau impairs the rate and extent of its heparin-induced aggregation without perturbing its activity toward microtubule polymerization. O-GlcNAcylation, however, does not impact the “global-fold” of tau as measured by a Förster resonance energy transfer assay. Similarly, nuclear magnetic resonance studies demonstrated that O-GlcNAcylation only minimally perturbs the local structural and dynamic features of a tau fragment (residues 353–408) spanning the last microtubule binding repeat to the major GlcNAc-acceptor Ser400. These data indicate that the inhibitory effects of O-GlcNAc on tau aggregation may result from enhanced monomer solubility or the destabilization of fibrils or soluble aggregates, rather than by altering the conformational properties of the monomeric protein. This work further underscores the potential of targeting the O-GlcNAc pathway for potential Alzheimer's disease therapeutics.  相似文献   

5.
The comprehension of pathogenetic mechanisms in tauopathy-associated neurodegenerative diseases can be improved by the knowledge of the biochemical and biophysical features of mutated tau proteins. Here, we used the full-length, wild-type tau, the V363A and V363I mutated species, associated with pathology, and the P301L mutated tau as a benchmark. Using several techniques, including small-angle X-ray scattering, atomic force microscopy, thioflavin T binding, and electrophoretic separation, we compared their course from intrinsically disordered monomers in solution to early-stage recruitment in complexes and then aggregates of increasing size over long periods up to the asymptotic aggregative behavior of full-length tau proteins. We showed that diversity in the kinetics of recruitment and aggregate structure occurs from the beginning and spreads all over their pathway to very large objects. The different extents of conformational changes and types of molecular assemblies among the proteins were also reflected in their in vitro toxicity; this variation could correlate with physiopathology in humans, considering that the P301L mutation is more aggressive than V363A, especially V363I. This study identified the presence of aggregation intermediates and corroborated the oligomeric hypothesis of tauopathies.  相似文献   

6.
Nie CL  Wei Y  Chen X  Liu YY  Dui W  Liu Y  Davies MC  Tendler SJ  He RG 《PloS one》2007,2(7):e629
Recent studies have shown that neurodegeneration is closely related to misfolding and aggregation of neuronal tau. Our previous results show that neuronal tau aggregates in formaldehyde solution and that aggregated tau induces apoptosis of SH-SY5Y and hippocampal cells. In the present study, based on atomic force microscopy (AFM) observation, we have found that formaldehyde at low concentrations induces tau polymerization whilst acetaldehyde does not. Neuronal tau misfolds and aggregates into globular-like polymers in 0.01-0.1% formaldehyde solutions. Apart from globular-like aggregation, no fibril-like polymerization was observed when the protein was incubated with formaldehyde for 15 days. SDS-PAGE results also exhibit tau polymerizing in the presence of formaldehyde. Under the same experimental conditions, polymerization of bovine serum albumin (BSA) or alpha-synuclein was not markedly detected. Kinetic study shows that tau significantly misfolds and polymerizes in 60 minutes in 0.1% formaldehyde solution. However, presence of 10% methanol prevents protein tau from polymerization. This suggests that formaldehyde polymerization is involved in tau aggregation. Such aggregation process is probably linked to the tau's special "worm-like" structure, which leaves the epsilon-amino groups of Lys and thiol groups of Cys exposed to the exterior. Such a structure can easily bond to formaldehyde molecules in vitro and in vivo. Polymerizing of formaldehyde itself results in aggregation of protein tau. Immunocytochemistry and thioflavin S staining of both endogenous and exogenous tau in the presence of formaldehyde at low concentrations in the cell culture have shown that formaldehyde can induce tau into amyloid-like aggregates in vivo during apoptosis. The significant protein tau aggregation induced by formaldehyde and the severe toxicity of the aggregated tau to neural cells may suggest that toxicity of methanol and formaldehyde ingestion is related to tau misfolding and aggregation.  相似文献   

7.
The protein aggregation is divided into amyloid fibrils and amorphous aggregates. Amyloid fibrils are composed of the 3-dimensional ordered structure and are bound to thioflavin T and Congo red dyes. The amorphous aggregates with the disordered structure do not bind to these dyes. We have investigated the pressure- and heat-induced aggregates of equine serum albumin (ESA) from the secondary structural viewpoint using FT-IR spectroscopy. We show the secondary structural differences between heat- and pressure-induced aggregates of ESA. The heat-induced irreversible aggregates of ESA are composed of the intermolecular beta-sheet structure without binding thioflavie T and Congo red to be amorphous form. On the other hand, the pressure-induced reversible aggregates are composed of the random structure to be also amorphous form. From the comparison of pressure effects on ESA in native and reducing conditions of disulfide bridges, we demonstrate that the restriction of structural flexibility by disulfide bridges is an important factor for the reversibility of the pressure-induced aggregation.  相似文献   

8.
The microtubule associated protein tau is a major component of neurofibrillary tangles in Alzheimer disease brain, however the neuropathological processes behind the formation of neurofibrillary tangles are still unclear. Previously, 14-3-3 proteins were reported to bind with tau. 14-3-3 Proteins usually bind their targets through specific serine/threonine –phosphorylated motifs. Therefore, the interaction of tau with 14-3-3 mediated by phosphorylation was investigated. In this study, we show that the phosphorylation of tau by either protein kinase A (PKA) or protein kinase B (PKB) enhances the binding of tau with 14-3-3 in vitro . The affinity between tau and 14-3-3 is increased 12- to 14-fold by phosphorylation as determined by real time surface plasmon resonance studies. Mutational analyses revealed that Ser214 is critical for the phosphorylation-mediated interaction of tau with 14-3-3. Finally, in vitro aggregation assays demonstrated that phosphorylation by PKA/PKB inhibits the formation of aggregates/filaments of tau induced by 14-3-3. As the phosphorylation at Ser214 is up-regulated in fetal brain, tau's interaction with 14-3-3 may have a significant role in the organization of the microtubule cytoskeleton in development. Also as the phosphorylation at Ser214 is up-regulated in Alzheimer's disease brain, tau's interaction with 14-3-3 might be involved in the pathology of this disease.  相似文献   

9.
Filamentous inclusions composed of the microtubule-associated protein tau are found in Alzheimer disease and other tauopathic neurodegenerative diseases, but the mechanisms underlying their formation from full-length protein monomer under physiological conditions are unclear. To address this issue, the fibrillization of recombinant full-length four-repeat human tau was examined in vitro as a function of time and submicromolar tau concentrations using electron microscopy assay methods and a small-molecule inducer of aggregation, thiazine red. Data were then fit to a simple homogeneous nucleation model with rate constant constraints established from filament dissociation rate, critical concentration, and mass-per-unit length measurements. The model was then tested by comparing the predicted time-dependent evolution of length distributions to experimental data. Results indicated that once assembly-competent conformations were attained, the rate-limiting step in the fibrillization pathway was tau dimer formation. Filament elongation then proceeded by addition of tau monomers to nascent filament ends. Filaments isolated at reaction plateau contained approximately 2 tau protomers/beta-strand spacing on the basis of mass-per-unit length measurements. The model suggests four key steps in the aggregation pathway that must be surmounted for tau filaments to form in disease.  相似文献   

10.
Sonication of proteins causes formation of aggregates that resemble amyloid   总被引:1,自引:0,他引:1  
Despite the widespread use of sonication in medicine, industry, and research, the effects of sonication on proteins remain poorly characterized. We report that sonication of a range of structurally diverse proteins results in the formation of aggregates that have similarities to amyloid aggregates. The formation of amyloid is associated with, and has been implicated in, causing of a wide range of protein conformational disorders including Alzheimer's disease, Huntington's disease, Parkinson's disease, and prion diseases. The aggregates cause large enhancements in fluorescence of the dye thioflavin T, exhibit green-gold birefringence upon binding the dye Congo red, and cause a red-shift in the absorbance spectrum of Congo red. In addition, circular dichroism reveals that sonication-induced aggregates have high beta-content, and proteins with significant native alpha-helical structure show increased beta-structure in the aggregates. Ultrastructural analysis by electron microscopy reveals a range of morphologies for the sonication-induced aggregates, including fibrils with diameters of 5-20 nm. The addition of preformed aggregates to unsonicated protein solutions results in accelerated and enhanced formation of additional aggregates upon heating. The dye-binding and structural characteristics, as well as the ability of the sonication-induced aggregates to seed the formation of new aggregates are all similar to the properties of amyloid. These results have important implications for the use of sonication in food, biotechnological and medical applications, and for research on protein aggregation and conformational disorders.  相似文献   

11.
The repeat length-dependent tendency of the polyglutamine sequences of certain proteins to form aggregates may underlie the cytotoxicity of these sequences in expanded CAG repeat diseases such as Huntington's disease. We report here a number of features of various polyglutamine (polyGln) aggregates and their assembly pathways that bear a resemblance to generally recognized defining features of amyloid fibrils. PolyGln aggregation kinetics displays concentration and length dependence and a lag phase that can be abbreviated by seeding. PolyGln aggregates exhibit classical beta-sheet-rich circular dichroism spectra consistent with an amyloid-like substructure. The fundamental structural unit of all the in vitro aggregates described here is a filament about 3 nm in width, resembling the protofibrillar intermediates in amyloid fibril assembly. We observed these filamentous structures either as isolated threads, as components of ribbonlike sheets, or, rarely, in amyloid-like twisted fibrils. All of the polyGln aggregates described here bind thioflavin T and shift its fluorescence spectrum. Although all polyGln aggregates tested bind the dye Congo red, only aggregates of a relatively long polyGln peptide exhibit Congo red birefringence, and this birefringence is only observed in a small portion of these aggregates. Remarkably, a monoclonal antibody with high selectivity for a generic amyloid fibril conformational epitope is capable of binding polyGln aggregates. Thus, polyGln aggregates exhibit most of the characteristic features of amyloid, but the twisted fibril structure with Congo red birefringence is not the predominant form in the polyGln repeat length range studied here. We also find that polyGln peptides exhibit an unusual freezing-dependent aggregation that appears to be caused by the freeze concentration of peptide and/or buffer components. This is of both fundamental and practical significance. PolyGln aggregation is revealed to be a highly specific process consistent with a significant degree of order in the molecular structure of the product. This ordered structure, or the assembly process leading to it, may be responsible for the cell-specific neuronal degeneration observed in Huntington's and other expanded CAG repeat diseases.  相似文献   

12.
Konno T  Oiki S  Hasegawa K  Naiki H 《Biochemistry》2004,43(42):13613-13620
Tau protein forms fibrous aggregates in the brain of patients with Alzheimer's disease. This type of aggregation in vitro is promoted efficiently by polyanions and anionic micelles. Here, we report another cosolvent system that induces the fibrous aggregation of human tau four-repeat domain (tau4RD). The protein aggregation was primarily achieved by a nonanionic agent 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), while the ionic condition was modified by inorganic salts. The aggregation analysis by three spectroscopic methods revealed a two-phase kinetics of the aggregation of tau4RD in the presence of HFIP at approximately 4-6%. Large increases in the light-scattering, the thioflavin-binding, and the secondary structure content of tau4RD have progressed within a few minutes at 37 degrees C, which was followed by another slower aggregation phase. Electron microscopic analysis demonstrated that the amorphous granules are formed in the faster step, which acquired a fibrous shape in the slower step in the solution containing NaCl. In the absence of the salt, however, the fibrous maturation was inhibited. Examination of various salt species in place of NaCl demonstrated that binding of anions to the precursor aggregates was essential for the fibrous maturation. On the basis of the results, we proposed an aggregation scheme of tau in which the formation of a thioflavin-binding intermediate occurred ahead of its fibrous maturation. The anionic environment was suggested to play a crucial role in the fibrous maturation and, therefore, could be an in vivo determinant of the morphology of the aggregates of tau.  相似文献   

13.
Chirita CN  Kuret J 《Biochemistry》2004,43(6):1704-1714
Alzheimer's disease is defined in part by the intraneuronal accumulation of filaments comprised of the microtubule-associated protein tau. In vitro, fibrillization of full-length, unphosphorylated recombinant tau can be induced under near-physiological conditions by treatment with various agents, including anionic surfactants. Here we examine the pathway through which anionic surfactants promote tau fibrillization using a combination of electron microscopy and fluorescence spectroscopy. Protein and surfactant first interacted in solution to form micelles, which then provided negatively charged surfaces that accumulated tau aggregates. Surface aggregation of tau protein was followed by the time-dependent appearance of a thioflavin S reactive intermediate that accumulated over a period of hours. The intermediate was unstable in the absence of anionic surfaces, suggesting it was not filamentous. Fibrillization proceeded after intermediate formation with classic nucleation-dependent kinetics, consisting of lag phase followed by the exponential increase in filament lengths, followed by an equilibrium phase reached in approximately 24 h. The pathway did not require protein insertion into the micelle hydrophobic core or conformational change arising from mixed micelle formation, because anionic microspheres constructed from impermeable polystyrene were capable of qualitatively reproducing all aspects of the fibrillization reaction. It is proposed that the progression from amorphous aggregation through intermediate formation and fibrillization may underlie the activity of other inducers such as hyperphosphorylation and may be operative in vivo.  相似文献   

14.
The microtubule-associated protein tau is hyperphosphorylated and forms neurofibrillary tangles in Alzheimer disease. Additionally caspase-cleaved tau is present in Alzheimer disease brains co-localized with fibrillar tau pathologies. To further understand the role of site-specific phosphorylation and caspase cleavage of tau in regulating its function, constructs of full-length tau (T4) or tau truncated at Asp421 (T4C3) to mimic caspase-3 cleavage with and without site-directed mutations that mimic phosphorylation at Thr231/Ser235, Ser396/Ser404, or at all four sites (Thr231/Ser235/Ser396/Ser404) were made and expressed in cells. Pseudophosphorylation of T4, but not T4C3, at either Thr231/Ser235 or Ser396/Ser404 increased its phosphorylation at Ser262 and Ser199. Pseudophosphorylation at Thr231/Ser235 impaired the microtubule binding of both T4 and T4C3. In contrast, pseudophosphorylation at Ser396/Ser404 only affected microtubule binding of T4C3 but did make T4 less soluble and more aggregated, which is consistent with the previous finding (Abraha, A., Ghoshal, N., Gamblin, T. C., Cryns, V., Berry, R. W., Kuret, J., and Binder, L. I. (2000) J. Cell Sci. 113, 3737-3745) that pseudophosphorylation at Ser396/Ser404 enhances tau polymerization in vitro. In situ T4C3 was more prevalent in the cytoskeletal and microtubule-associated fractions compared with T4, whereas purified recombinant T4 bound microtubules with higher affinity than did T4C3 in an in vitro assay. These data indicate the importance of cellular factors in regulating tau-microtubule interactions and that, in the cells, phosphorylation of T4 might impair its microtubule binding ability more than caspase cleavage. Treatment of cells with nocodazole revealed that pseudophosphorylation of T4 at both Thr231/Ser235 and Ser396/Ser404 diminished the ability of tau to protect against microtubule depolymerization, whereas with T4C3 only pseudophosphorylation at Ser396/Ser404 attenuated the ability of tau to stabilize the microtubules. These results show that site-specific phosphorylation and caspase cleavage of tau differentially affect the ability of tau to bind and stabilize microtubules and facilitate tau self-association.  相似文献   

15.
beta-Amyloid protein (beta-A/4) is the major protein component of Alzheimer disease-related senile plaques and has been postulated to be a significant contributing factor in the onset and/or progression of the disease. In the senile plaque, beta-A/4 appears as bundles of amyloid fibrils. The biological activity of beta-A/4 may be related to its state of aggregation. In this work, self-assembly, fibril formation, and interfibrillary aggregation of beta(1-28), a synthetic peptide homologous with the amino-terminal fragment of beta-A/4, were investigated. The predominant form of beta(1-28) detected by size-exclusion chromatography and polyacrylamide gel electrophoresis was apparently a tetramer which does not bind Congo red. Aggregates containing cross-beta sheet structures which bind Congo red and thioflavin T were observed at concentrations of approximately 0.3 mg/ml or greater. Concentrations of 0.5-1 mg/ml were necessary for aggregation into fibrils to be detectable by classical or quasielastic light scattering. Both fibril elongation and fibril-fibril aggregation occur over the time scale investigated. The kinetics of aggregation were much faster at physiological salt concentrations than at lower ionic strength. Ionic strength also appeared to influence the morphology of the fibril aggregates. The data indicate that sample preparation method and sample history influence fibril size and number density.  相似文献   

16.
Tau is a substrate of caspases, and caspase-cleaved tau has been detected in Alzheimer's disease brain but not in control brain. Furthermore, in vitro studies have revealed that caspase-cleaved tau is more fibrillogenic than full-length tau. Considering these previous findings, the purpose of this study was to determine how the caspase cleavage of tau affected tau function and aggregation in a cell model system. The effects of glycogen synthase kinase 3 beta (GSK3 beta), a well established tau kinase, on these processes also were examined. Tau or tau that had been truncated at Asp-421 to mimic caspase cleavage (Tau-D421) was transfected into cells with or without GSK3 beta, and phosphorylation, microtubule binding, and tau aggregation were examined. Tau-D421 was not as efficiently phosphorylated by GSK3 beta as full-length tau. Tau-D421 efficiently bound microtubules, and in contrast to the full-length tau, co-expression with GSK3 beta did not result in a reduction in the ability of Tau-D421 to bind microtubules. In the absence of GSK3 beta, neither Tau-D421 nor full-length tau formed Sarkosyl-insoluble inclusions. However, in the presence of GSK3 beta, Tau-D421, but not full-length tau, was present in the Sarkosyl-insoluble fraction and formed thioflavin-S-positive inclusions in the cell. Nonetheless, co-expression of GSK3 beta and Tau-D421 did not result in an enhancement of cell death. These data suggest that a combination of phosphorylation events and caspase activation contribute to the tau oligomerization process in Alzheimer's disease, with GSK3 beta-mediated tau phosphorylation preceding caspase cleavage.  相似文献   

17.
Is the alpha-helix structure capable of triggering the formation of aberrant protein aggregates? To answer this question, we investigate the in vitro aggregation of tau protein in the presence of the helix-inducing agent TFE. Tau is a natively unfolded protein that binds to microtubules and forms aggregates in Alzheimer's disease. We find that full-length tau has residual alpha-helix structure, which is further enhanced by three mutations involved in genetic neurological disorders. TFE concentrations matching an alpha-helical content of 40% in full-length tau and the triple mutant induce the formation of aggregates that are morphologically and structurally heterogeneous. A simple dilution experiment reveals that heterogeneity results from the competition between alpha-helical fibrillar aggregates and more classical amyloid-like aggregates. The alpha-helical aggregates are more resilient to dilution and have the spectroscopic features of alpha-helical coiled coils. We propose a general mechanism by which intrinsically stable alpha-helices can associate into aggregates with only coarse coiled-coil symmetry. In tau, high intrinsic alpha-helix stability and coarse coiled-coil symmetry could be byproducts of its biological function.  相似文献   

18.
Aggregation and accumulation of the microtubule-associated protein tau are associated with cognitive decline and neuronal degeneration in Alzheimer's disease and other tauopathies. Thus, preventing the transition of tau from a soluble state to insoluble aggregates and/or reversing the toxicity of existing aggregates would represent a reasonable therapeutic strategy for treating these neurodegenerative diseases. Here we demonstrate that molecular chaperones of the heat shock protein 70 (Hsp70) family are potent inhibitors of tau aggregation in vitro, preventing the formation of both mature fibrils and oligomeric intermediates. Remarkably, addition of Hsp70 to a mixture of oligomeric and fibrillar tau aggregates prevents the toxic effect of these tau species on fast axonal transport, a critical process for neuronal function. When incubated with preformed tau aggregates, Hsp70 preferentially associated with oligomeric over fibrillar tau, suggesting that prefibrillar oligomeric tau aggregates play a prominent role in tau toxicity. Taken together, our data provide a novel molecular basis for the protective effect of Hsp70 in tauopathies.  相似文献   

19.
Neurofibrillary tangles, which are major pathological hallmarks of Alzheimer's disease (AD), are composed of paired helical filaments (PHFs) containing hyperphosphorylated tau. Specific kinases regulate tau phosphorylation and are closely linked to the pathogenesis of AD. We have characterized a human tau-tubulin kinase 1 (TTBK1) gene located on chromosome 6p21.1. TTBK1 is a serine/threonine/tyrosine kinase that is conserved among species and belongs to the casein kinase 1 superfamily. It is specifically expressed in the brain, especially in the cytoplasm of cortical and hippocampal neurons. TTBK1 phosphorylates tau proteins in both a Mg2+- and a Mn2+-dependent manner. Phosphopeptide mapping and immunoblotting analysis confirmed a direct tau phosphorylation by TTBK1 at Ser198, Ser199, Ser202 and Ser422, which are also phosphorylated in PHFs. TTBK1 also induces tau aggregation in human neuronal cells in a dose-dependent manner. We conclude that TTBK1 is a neuron-specific dual kinase involved in tau phosphorylation at AD-related sites and is also associated with tau aggregation.  相似文献   

20.
Combs B  Voss K  Gamblin TC 《Biochemistry》2011,50(44):9446-9456
The microtubule-associated protein tau exists as six isoforms created through the splicing of the second, third, and tenth exons. The isoforms are classified by their number of N-terminal exons (0N, 1N, or 2N) and by their number of microtubule-binding repeat regions (3R or 4R). Hyperphosphorylated isoforms accumulate in insoluble aggregates in Alzheimer's disease and other tauopathies. These neurodegenerative diseases can be categorized based on the isoform content of the aggregates they contain. Hyperphosphorylated tau has the general characteristics of an upward electrophoretic shift, decreased microtubule binding, and an association with aggregation. Previously we have shown that a combination of seven pseudophosphorylation mutations at sites phosphorylated by GSK-3β, referred to as 7-Phos, induced several of these characteristics in full-length 2N4R tau and led to the formation of fewer but longer filaments. We sought to determine whether the same phosphorylation pattern could cause differential effects in the other tau isoforms, possibly through varied conformational effects. Using in vitro techniques, we examined the electrophoretic mobility, aggregation properties, and microtubule stabilization of all isoforms and their pseudophosphorylated counterparts. We found that pseudophosphorylation affected each isoform, but in several cases certain isoforms were affected more than others. These results suggest that hyperphosphorylation of tau isoforms could play a major role in determining the isoform composition of tau aggregates in disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号