首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
RAT embryo cells infected with either CF-1 or Rauscher C-type RNA murine leukaemia virus, when treated with diethylnitrosamine (DENA), undergo morphological transformation and become aneuploid1. Untreated cells and cells treated with either virus or chemical alone do not transform. We describe here a similar effect of 3-methylcholanthrene (3 MC) on rat cells infected with Rauscher leukaemia virus.  相似文献   

2.
Evidence that the resistance of simian virus (SV40)-transformed permissive cells to superinfection with SV40 is due to lack of virus uptake is presented. When virus uptake is enhanced, the events of infection proceed as in normal permissive cells, resulting in production of infectious virus.  相似文献   

3.
Primary rat kidney cells and mouse 3T3 cells can be transformed by DNA of simian virus 40 when use is made of the calcium technique (Graham and van der Eb, 1973). The transformation assay in primary rat cells is reproducible, but the dose response is not linear.  相似文献   

4.
When the hamster cell lines BHK21 and Nil-2 were infected at a multiplicity of 100 with the adenovirus 7-simian virus 40 (SV40) hybrid (strain LLE46), SV40 T antigen was induced in 0.1 to 6% of the cells during the first 96 hr postinfection, morphological changes occurred 3 to 7 weeks later, and eventually all the cells contained SV40 T antigen, but no adeno 7 T antigen. Results were similar when primary and secondary monolayer cultures of hamster embryo (HE) cells were infected with the adeno 7-SV40 hybrid, and when primary HE cells were infected with SV40. However, infection of BHK21, Nil-2, and secondary HE cells with the same multiplicity of SV40 did not induce SV40 T antigen or morphological transformation. This suggests that the target cells required for infection with SV40 virions, but not those required for infection with the hybrid, are lost or altered in secondary HE cultures and in the two cell lines. In most of the virus-host cell systems in which SV40 T antigen and transformation were induced, there was a decrease in the number of T antigen-positive cells after the initial infection. This was followed by a lag period of up to 2 months before the onset of a progressive increase in the number of positive cells. The beginning of the rise in T antigen production coincided with the first morphological changes.  相似文献   

5.
Simian virus 40 (SV40) was rescued from heterokaryons of transformed mouse and transformed human cells. To determine whether the rescued SV40 was progeny of the SV40 genome resident in the transformed mouse cells, the transformed human cells, or both, rescue experiments were performed with mouse lines transformed by plaque morphology mutants of SV40. The transformed mouse lines that were used yielded fuzzy, small-clear, or large-clear plaques after fusion with CV-1 (African green monkey kidney) cells. The transformed human lines that were used did not release SV40 spontaneously or after fusion with CV-1 cells. From each mouse-human fusion mixture, only the SV40 resident in the transformed mouse cells was recovered. Fusion mixtures of CV-1 and transformed mouse cells yielded much more SV40 than those from transformed human and transformed mouse cells. The rate of SV40 formation was also greater from monkey-mouse than from human-mouse heterokaryons. Deoxyribonucleic acid (DNA) from SV40 strains which form fuzzy, largeclear, or small-clear plaques on CV-1 cells was also used to infect monkey (CV-1 and Vero), normal human, and transformed human cell lines. The rate of virion formation and the final SV40 yields were much higher from monkey than from normal or transformed human cells. Only virus with the plaque type of the infecting DNA was found in extracts from the infected cells. Two uncloned sublines of transformed human cells [W18 Va2(P363) and WI38 Va13A] released SV40 spontaneously. Virus yields were not appreciably enhanced by fusion with CV-1 cells. However, clonal lines of W18 Va2(P363) did not release SV40 spontaneously or after fusion with CV-1 cells. In contrast, several clonal lines of WI38 Va13A cells did continue to shed SV40 spontaneously.  相似文献   

6.
7.
Hybrids between mouse cells and simian virus 40 (SV40)-transformed rat cells were made, and their properties and chromosome constitution were investigated over many generations. Their hybrid nature was confirmed by enzyme studies. During a period of 1 year a loss of 10 to 20% of the total number of chromosomes was observed. The SV40 tumor antigen was present and remained present in the hybrids. The parental and hybrid cells were studied for agglutination with concanavalin A, for growth in soft agar, and for serum requirement. These growth and surface characteristics of the transformed cells appeared in the hybrids.  相似文献   

8.
Oligomeric forms of simian virus 40 (SV40) deoxyribonucleic acid (DNA) were isolated from monkey kidney cells infected with two plaque morphology mutants of SV40. Recombinant, large clear-plaque-type SV40 was produced in cells productively infected with oligomeric forms of SV40 DNA.  相似文献   

9.
Transformation of Mouse Macrophages by Simian Virus 40   总被引:3,自引:0,他引:3       下载免费PDF全文
Studies were undertaken to prove that simian virus 40 (SV40) can transform the mouse macrophage, a cell type naturally restricted from deoxyribonucleic acid (DNA) replication. Balb/C macrophages infected with SV40 demonstrated T-antigen production and induced DNA synthesis simultaneously. In the absence of apparent division, these cells remained T antigen-positive for at least 45 days. SV40 could be rescued from nondividing, unaltered macrophages during the T antigen-producing period. Proliferating transformants appeared at an average of 66 days post-SV40 infection. Established cell lines were T antigen-positive and were negative for infectious virus, but yielded SV40 after fusion with African green monkey kidney cells. Their identity as transformed macrophages was substantiated by evaluation of cellular morphology, phagocytosis, acid phosphatase, beta(1c) synthesis, and aminoacridine incorporation.  相似文献   

10.
Nucleoprotein Complexes in Simian Virus 40-Infected Cells   总被引:11,自引:15,他引:11       下载免费PDF全文
When African green monkey kidney cells (BSC-1) were infected with simian virus 40 (SV40) and extracted with 0.25% Triton X-100 after exposure to (3)H-thymidine, the (3)H-SV40 deoxyribonucleic acid (DNA) was present in a form which had a sedimentation coefficient in sucrose gradients of 44S. The change from the sedimentation coefficient of purified SV40 DNA (21S) was shown to result from the association of the SV40 DNA in the Triton extracts with protein by means of sensitivity to Pronase digestion and labeling with (14)C-amino acids. Short-term labeling experiments with (3)H-thymidine demonstrated that SV40 DNA molecules in the course of replication (25S) were also present as nucleoprotein complexes in Triton-extracted material. Labeled DNA extracted with Triton in the form of nucleoprotein complexes was obtained in amounts which were quantitatively equivalent to the amounts extracted with deoxycholate in parallel experiments. This indicated that the newly synthesized pools of SV40 DNA may not occur as free DNA in the infected cell.  相似文献   

11.
Marked differences were found in the susceptibility of human fibroblasts to transformation by simian virus 40 (SV40). Highly susceptible cell strains were derived from patients with diseases associated with chromosomal abnormalities and a high incidence of tumors. In the present study, SV40 transformation-susceptible cell strains were not found to have a generalized increase in viral sensitivity. The differences in transformation frequency among cell strains with whole virus are eliminated by the use of isolated SV40 deoxyribonucleic acid, suggesting that the relative resistance of most cell strains to transformation by whole virus is due to a block at an early step in infection.  相似文献   

12.
We have studied the binding of the tumor antigen (T-antigen) of simian virus 40 to simian virus 40 chromatin (minichromosomes). The minichromosomes isolated from infected cells by a modification of standard techniques were relatively free of contaminating RNA and cellular DNA and had a ratio (by weight) of protein to DNA of approximately 1; their DNA was 50 to 60% digestible to an acid-soluble form by staphylococcal nuclease. Cleavage of this chromatin with restriction endonucleases indicated that the nuclease-resistant regions were randomly distributed in the population of minichromosomes, but were not randomly distributed within minichromosomes. Only 20 to 35% of these minichromosomes adsorbed nonspecifically to nitrocellulose filters, permitting binding studies between simian virus 40 T-antigen and chromatin to be performed. Approximately two to three times as much T-antigen was required to bind chromatin as to bind an equivalent amount of free DNA. When T-antigen was present in excess, both chromatin and free DNA were quantitatively retained on the filters. On the other hand, when DNA or chromatin was present in excess, only one-third as much chromatin as DNA was retained. We suggest that T-antigen-chromatin complexes may be formed by the cooperative binding of T-antigen to chromatin, whereas T-antigen-DNA complexes may be formed by simple bimolecular interactions.  相似文献   

13.
Simian virus 40 (SV40) infection of human diploid cells failed to cause an enhanced production of thymidine kinase during the first 10 days after infection. Thymidine kinase activities from extracts of SV40-transformed cultures (human or simian) were considerably higher than the activity levels in extracts from the normal cells of origin. In addition, whereas the kinase activities obtained for human diploid cultures decreased as the cell sheet became confluent, the kinase activities for SV40-transformed human cells remained high after confluence was reached. Antisera obtained from hamsters bearing SV40 or adeno-7-SV40 hybrid virus tumors selectively inhibited enzyme from transformed sources (human or simian). Also, the antisera selectively inhibited enzyme extracted from SV40-lytically infected monkey cells. Sera from normal animals or from hamsters bearing polyoma tumors failed to inhibit enzymes from normal, SV40-transformed, or SV40-lytically infected cells. The Michaelis constant of partially purified enzyme from SV40-transformed cells was two to five times as high as that obtained for partially purified enzyme from human diploid cell cultures.  相似文献   

14.
Viral nucleoprotein complexes were extracted from the nuclei of simian virus 40 (SV40)-infected TC7 cells by low-salt treatment in the absence of detergent, followed by sedimentation on neutral sucrose gradients. Two forms of SV40 nucleoprotein complexes, those containing SV40 replicative intermediate DNA and those containing SV40 (I) DNA, were separated from one another and were found to have sedimentation values of 125 and 93S, respectively. [(35)S]methioninelabeled proteins in the nucleoprotein complexes were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In addition to VP1, VP3, and histones, a protein with a molecular weight of 100,000 (100K) is present in the nucleoprotein complexes containing SV40 (I) DNA. The 100K protein was confirmed as SV40 100K T antigen, both by immunoprecipitation with SV40 anti-T serum and by tryptic peptide mapping. The 100K T antigen is predominantly associated with the SV40 (I) DNA-containing complexes. The 17K T antigen, however, is not associated with the SV40 (I) DNA-containing nucleoprotein complexes. The functional significance of the SV40 100K T antigen in the SV40 (I) DNA-containing nucleoprotein complexes was examined by immunoprecipitation of complexes from tsA58-infected TC7 cells. The 100K T antigen is present in nucleoprotein complexes extracted from cells grown at the permissive temperature but is clearly absent from complexes extracted from cells grown at the permissive temperature and shifted up to the nonpermissive temperature for 1 h before extraction, suggesting that the association of the 100K T antigen with the SV40 nucleoprotein complexes is involved in the initiation of SV40 DNA synthesis.  相似文献   

15.
Messenger RNA was isolated from simian virus 40 (SV40)-infected and mock-infected cells by chromatography on poly(U) sepharose. When added to cell-free extracts from Chinese hamster ovary cells or rabbit reticulocytes, RNA from the infected cells, but not from mock-infected cells, stimulated synthesis of the major SV40 capsid protein. Identification of this species was done by sodium dodecyl sulfate gel electrophoresis, peptide mapping, and immunoprecipitation. The in vitro synthesized capsid protein was slightly different from virion assembled capsid protein, as shown by separation upon chromatography on hydroxylapatite and by minor differences in the peptide map.  相似文献   

16.
The number and molecular weight of the structural polypeptides of highly purified simian virus 40 (SV40) were determined by polyacrylamide gel electrophoresis. Six different polypeptides were found, two of which (VP1 and VP2) comprise the bulk of the viral capsid proteins. The pattern of protein synthesis in productively infected CV-1 cells was studied by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Identification of virus-induced proteins in the infected CV-1 cells was achieved in double-labeling experiments by electrophoresis with purified labeled SV40 capsid proteins. Four of these proteins (VP1 and VP4) could be classified as components of the virion because their synthesis occurred after the onset of viral deoxyribonucleic acid (DNA) replication and because they were inhibited by arabinofuranosylcytosine (ara-C). Appearance of two other virus-induced proteins was not prevented by ara-C; one of them did not comigrate in the electrophoresis with purified virion polypeptides, and both could be detected before the onset of viral DNA synthesis. These latter two proteins were classified on the basis of these criteria as nonvirion capsid proteins (NCVP1 and NCVP2).  相似文献   

17.
Purified simian virus 40 (SV40) virions, grown in primary African green monkey kidney cells labeled prior to infection with (3)H-thymidine, contain a variable quantity of (3)H-labeled deoxyribonucleic acid (DNA). This DNA is resistant to deoxyribonuclease, sediments at 250S, and is enclosed in a particle that can be precipitated with SV40-specific antiserum. DNA-DNA hybridization experiments demonstrate that this (3)H-labeled component in purified SV40 virions is cellular DNA. When this (3)H-labeled DNA is released from purified virus with sodium dodecyl sulfate, it has an average sedimentation constant of 14S. Sedimentation through neutral and alkaline sucrose gradients shows that this 14S DNA is composed of a collection of different sizes of DNA molecules that sediment between 11 and 15S. As a result of this size heterogeneity, SV40 virions containing cellular DNA (pseudovirions) have a variable DNA to capsid protein ratio and exhibit a spectrum of buoyant densities in a CsCl equilibrium gradient. Pseudovirions are enriched, relative to true virions, on the lighter density side of infectious SV40 virus banded to equilibrium in a CsCl gradient. Little or no cellular DNA was found in purified SV40 virus preparations grown in BSC-1 or CV-1 cells.  相似文献   

18.
JC polyomavirus (JCV), the causative agent of progressive multifocal leukoencephalopathy (PML), is ubiquitous in humans, infecting children asymptomatically and then persisting in the kidney. Renal JCV is not latent but replicates to excrete progeny in the urine. The renal-urinary JCV DNAs carry the archetype regulatory region that generates various rearranged regulatory regions occurring in JCVs derived from the brains of PML patients. Tissue cultures that support the efficient growth of archetype JCV have not been reported. We studied whether archetype JCV could replicate in COS-7 cells, simian cells transformed with an origin-defective mutant of simian virus 40 (SV40). Efficient JCV replication, as detected by a hemagglutination assay, was observed in cultures transfected with five of the six archetype DNAs. The progeny JCVs could be passaged to fresh COS-7 cells. However, when the parental cells of COS-7 not expressing T antigen were transfected with archetype JCV DNAs, no viral replication was detected, indicating that SV40 T antigen is essential for the growth of JCV in COS-7 cells. The archetype regulatory region was conserved during viral growth in COS-7 cells, although a small proportion of JCV DNAs underwent rearrangements outside the regulatory region. We then attempted to recover archetype JCV from urine by viral culture in COS-7 cells. Efficient JCV production was observed in COS-7 cells infected with five of the six JCV-positive urine samples examined. Thus, COS-7 cells should be of use not only for the production of archetype JCV on a large scale but also for the isolation of archetype JCV from urine.  相似文献   

19.
Simian virus 40 (SV40) can be rescued from certain SV40-transformed hamster cells by fusion with susceptible African green monkey kidney (CV-1) cells, in the presence of ultraviolet-irradiated Sendai virus. We have determined the sites in which SV40 is produced during rescue in these heterokaryons. To determine the sequence, nuclei were isolated from fused cells at various times after fusion, separated on sucrose-density gradients, and assayed for infectious center formation and virus content on CV-1 monolayers. Virus was first detected in the transformed nucleus (40 hr postfusion), and later associated with both transformed and susceptible nuclei (68 to 72 hr). Viral rescue apparently does not depend upon the transfer of SV40 deoxyribonucleic acid to a susceptible CV-1 nucleus, since the transformed nucleus is the primary site of virus production. The time course of certain cytological events in the rescue process and in productive infection was found to be similar.  相似文献   

20.
Several independent cell lines transformed by simian virus 40 carry a species of viral RNA of 900,000 to 1,000,000 daltons. A viral RNA species of similar size is found early in the lytic cycle. Late in the viral lytic cycle, two prominent viral RNA species of about 600,000 and 900,000 daltons are seen. The larger late species shares nucleotide sequences with, and is less stable than, the smaller. These RNA species are located in the cytoplasm of the infected cell. The regions of the viral genome coding for these RNA species are mapped by hybridization of lytic RNA species to fragments of the genome produced by cleavage with Haemophilus aegyptius endonuclease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号