首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jin Y  Nagai M  Nagai Y  Nagatomo S  Kitagawa T 《Biochemistry》2004,43(26):8517-8527
The alpha-abnormal hemoglobin (Hb) M variants show physiological properties different from the beta-abnormal Hb M variants, that is, extremely low oxygen affinity of the normal subunit and extraordinary resistance to both enzymatic and chemical reduction of the abnormal met-subunit. To get insight into the contribution of heme structures to these differences among Hb M's, we examined the 406.7-nm excited resonance Raman (RR) spectra of five Hb M's in the frequency region from 1700 to 200 cm(-1). In the high-frequency region, profound differences between met-alpha and met-beta abnormal subunits were observed for the in-plane skeletal modes (the nu(C=C), nu(37), nu(2), nu(11), and nu(38) bands), probably reflecting different distortions of heme structure caused by the out-of-plane displacement of the heme iron due to tyrosine coordination. Below 900 cm(-1), Hb M Iwate [alpha(F8)His --> Tyr] exhibited a distinct spectral pattern for nu(15), gamma(11), delta(C(beta)C(a)C(b))(2,4), and delta(C(beta)C(c)C(d))(6,7) compared to that of Hb M Boston [alpha(E7)His --> Tyr], although both heme irons are coordinated by Tyr. The beta-abnormal Hb M variants, namely, Hb M Hyde Park [beta(F8)His --> Tyr], Hb M Saskatoon [beta(E7)His --> Tyr], and Hb M Milwaukee [beta(E11)Val --> Glu], displayed RR band patterns similar to that of metHb A, but with some minor individual differences. The RR bands characteristic of the met-subunits of Hb M's totally disappeared by chemical reduction, and the ferrous heme of abnormal subunits was no longer bonded with Tyr or Glu. They were bonded to the distal (E7) or proximal (F8) His, and this was confirmed by the presence of the nu(Fe-His) mode at 215 cm(-1) in the 441.6-nm excited RR spectra. A possible involvement of heme distortion in differences of reducibility of abnormal subunits and oxygen affinity of normal subunits is discussed.  相似文献   

2.
The ferric form of the homodimeric hemoglobin from Scapharca inaequivalvis (HbI) displays a unique pH-dependent behavior involving the interconversion among a monomeric low-spin hemichrome, a dimeric high-spin aquomet six-coordinate derivative, and a dimeric high-spin five-coordinate species that prevail at acidic, neutral, and alkaline pH values, respectively. In the five-coordinate derivative, the iron atom is bound to a hydroxyl group on the distal side since the proximal Fe-histidine bond is broken, possibly due to the packing strain exerted by the Phe97 residue on the imidazole ring [Das, T. K., Boffi, A., Chiancone, E. and Rousseau, D. L. (1999) J. Biol. Chem. 274, 2916-2919]. To determine the proximal and distal effects on the coordination and spin state of the iron atom and on the association state, two heme pocket mutants have been investigated by means of optical absorption, resonance Raman spectroscopy, and analytical ultracentrifugation. Mutation of the distal histidine to an apolar valine causes dramatic changes in the coordination and spin state of the iron atom that lead to the formation of a five-coordinate derivative, in which the proximal Fe-histidine bond is retained, at acidic pH values and a high-spin, hydroxyl-bound six-coordinate derivative at neutral and alkaline pH values. At variance with native HbI, the His69 --> Val mutant is always high-spin and does not undergo dissociation into monomers at acidic pH values. The Phe97 --> Leu mutant, like the native protein, forms a monomeric hemichrome species at acidic pH values. However, at alkaline pH, it does not give rise to the unusual hydroxyl-bound five-coordinate derivative but forms a six-coordinate derivative with the proximal His and distal hydroxyl as iron ligands.  相似文献   

3.
The role of the proximal heme iron ligand in activation of hydrogen peroxide and control of spin state and coordination number in heme proteins is not yet well understood. Although there are several examples of amino acid sidechains with oxygen atoms which can act as potential heme iron ligands, the occurrence of protein-derived oxygen donor ligation in natural protein systems is quite rare. The sperm whale myoglobin cavity mutant H93G Mb (D. Barrick, Biochemistry 33 (1994) 6546) has its proximal histidine ligand replaced by glycine, a mutation which leaves an open cavity capable of accommodation of a variety of unnatural potential proximal ligands. This provides a convenient system for studying ligand-protein interactions. Molecular modeling of the proximal cavity in the active site of H93G Mb indicates that the cavity is of sufficient size to accommodate benzoate and phenolate in conformations that allow their oxygen atoms to come within binding distance of the heme iron. In addition, benzoate may occupy the cavity in an orientation which allows one carboxylate oxygen atom to ligate to the heme iron while the other carboxylate oxygen is within hydrogen bonding distance of serine 92. The ferric phenolate and benzoate complexes have been prepared and characterized by UV-visible and MCD spectroscopies. The benzoate adduct shows characteristics of a six-coordinate high-spin complex. To our knowledge, this is the first known example of a six-coordinate high-spin heme complex with an anionic oxygen donor proximal ligand. The benzoate ligand is displaced at alkaline pH and upon reaction with hydrogen peroxide. The phenolate adduct of H93G Mb is a five-coordinate high-spin complex whose UV-visible and MCD spectra are distinct from those of the histidine 93 to tyrosine (H93Y Mb) mutant of sperm whale myoglobin. The phenolate adduct is stable at alkaline pH and exhibits a reduced reactivity with hydrogen peroxide relative to that of both native ferric myoglobin, and the exogenous ligand-free derivative of ferric H93G Mb. These observations indicate that the identity of the proximal oxygen donor ligand has an important influence on both the heme iron coordination number and the reactivity of the complex with hydrogen peroxide.  相似文献   

4.
Nagai M  Aki M  Li R  Jin Y  Sakai H  Nagatomo S  Kitagawa T 《Biochemistry》2000,39(43):13093-13105
Heme structures of a natural mutant hemoglobin (Hb), Hb M Iwate [alpha87(F8)His-->Tyr], and protonation of its F8-Tyr were examined with the 244-nm excited UV resonance Raman (UVRR) and the 406.7- and 441.6-nm excited visible resonance Raman (RR) spectroscopy. It was clarified from the UVRR bands at 1605 and 1166 cm(-)(1) characteristic of tyrosinate that the tyrosine (F8) of the abnormal subunit in Hb M Iwate adopts a deprotonated form. UV Raman bands of other Tyr residues indicated that the protein takes the T-quaternary structure even in the met form. Although both hemes of alpha and beta subunits in metHb A take a six-coordinate (6c) high-spin structure, the 406.7-nm excited RR spectrum of metHb M Iwate indicated that the abnormal alpha subunit adopts a 5c high-spin structure. The present results and our previous observation of the nu(Fe)(-)(O(tyrosine)) Raman band [Nagai et al. (1989) Biochemistry 28, 2418-2422] have proved that F8-tyrosinate is covalently bound to Fe(III) heme in the alpha subunit of Hb M Iwate. As a result, peripheral groups of porphyrin ring, especially the vinyl and the propionate side chains, were so strongly influenced that the RR spectrum in the low-frequency region excited at 406.7 nm is distinctly changed from the normal pattern. When Hb M Iwate was fully reduced, the characteristic UVRR bands of tyrosinate disappeared and the Raman bands of tyrosine at 1620 (Y8a), 1207 (Y7a), and 1177 cm(-)(1) (Y9a) increased in intensity. Coordination of distal His(E7) to the Fe(II) heme in the reduced alpha subunit of Hb M Iwate was proved by the observation of the nu(Fe)(-)(His) RR band in the 441.6-nm excited RR spectrum at the same frequency as that of its isolated alpha chain. The effects of the distal-His coordination on the heme appeared as a distortion of the peripheral groups of heme. A possible mechanism for the formation of a Fe(III)-tyrosinate bond in Hb M Iwate is discussed.  相似文献   

5.
We report the first characterization of the physical and spectroscopic properties of the Staphylococcus aureus heme-binding protein IsdA. In this study, a combination of gel filtration chromatography and analytical centrifugation experiments demonstrate that IsdA, in solution, is a monomer and adopts an extended conformation that would suggest that it has the ability to protrude from the staphylococcal cell wall and interact with the extracellular environment. IsdA efficiently scavenged intracellular heme within Escherichia coli. Gel filtration chromatography and electrospray mass spectrometry together showed that rIsdA in solution is a monomer, and each monomer binds a single heme. Magnetic circular dichroism analyses demonstrate that the heme in rIsdA is a five-coordinate high-spin ferric heme molecule, proximally coordinated by a tyrosyl residue in a cavity that restricts access to small ligands. The heme binding is unlike that in a typical heme protein, for example, myoglobin, because we report that no additional axial ligation is possible in the high-spin ferric state of IsdA. However, reduction to ferrous heme is possible which then allows CO to axially ligate to the ferrous iron. Reoxidation forms the ferric heme, which is once again isolated from exogenous ligands. In summary, rIsdA binds a five-coordinate, high-spin ferric heme which is proximally coordinated by tyrosine. Reduction results in formation of five-coordinate, high-spin ferrous heme with a neutral axial ligand, most likely a histidine. Subsequent addition of CO results in a six-coordinate low-spin ferrous heme also with histidine likely bound proximally. Reoxidation returns the tyrosine as the proximal ligand.  相似文献   

6.
M Nagai  Y Yoneyama  T Kitagawa 《Biochemistry》1991,30(26):6495-6503
To clarify the role of the proximal histidine (F8-His), distal His (E7-His), and E11 valine (E11-Val) in ligand binding of hemoglobin (Hb), we have investigated the resonance Raman (RR) spectra of the carbon monoxide adduct of Hbs M (COHb M) in which one of these residues was genetically replaced by another amino acid in either the alpha or beta subunit. In the fully reduced state, all Hbs M gave v3 at approximately 1472 cm-1 and vFe-His at 214-218 cm-1, indicating that they have a pentacoordinate heme and the heme iron is bound to either E7-His or F8-His. The porphyrin skeletal vibrations of the COHb M were essentially unaltered by replacements of E7- or F8-His with tyrosine (Tyr) and of E11-Val by glutamic acid (Glu). The vCO, vFe-CO, and delta Fe-C-O frequencies of COHb M Iwate (alpha F8-His----Tyr), COHb M Hyde Park (beta F8-His----Tyr), and COHb M Milwaukee (beta E11-Val----Glu) were nearly identical with those of COHb A. In contrast, the RR spectra of COHb M Boston (alpha E7-His----Tyr) and COHb M Saskatoon (beta E7-His----Tyr) gave two new Raman bands derived from the abnormal subunits, vFe-CO at 490 cm-1 and vCO at 1972 cm-1, in addition to those from the normal subunits at 505 cm-1 (vFe-CO) and 1952 cm-1 (vCO). The CO adduct of the abnormal subunits exhibited apparently no photodissociation upon illumination of CW laser with a stationary cell under which the normal subunit exhibited complete photodissociation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Prostaglandin endoperoxide H synthases-1 and -2 (PGHS-1 and -2) convert arachidonic acid to prostaglandin H(2) (PGH(2)), the committed step in prostaglandin and thromboxane formation. Interaction of peroxides with the heme sites in PGHSs generates a tyrosyl radical that catalyzes subsequent cyclooxygenase chemistry. To study the peroxidase reaction of ovine oPGHS-1, we combined spectroscopic and directed mutagenesis data with X-ray crystallographic refinement of the heme site. Optical and Raman spectroscopy of oxidized oPGHS-1 indicate that its heme iron (Fe(3+)) exists exclusively as a high-spin, six-coordinate species in the holoenzyme and in heme-reconstituted apoenzyme. The sixth ligand is most likely water. The cyanide complex of oxidized oPGHS-1 has a six-coordinate, low-spin ferric iron with a v[Fe-CN] frequency at 445 cm(-)(1); a monotonic sensitivity to cyanide isotopomers that indicates the Fe-CN adduct has a linear geometry. The ferrous iron in reduced oPGHS-1 adopts a high-spin, five-coordinate state that is converted to a six-coordinate, low-spin geometry by CO. The low-frequency Raman spectrum of reduced oPGHS-1 reveals two v[Fe-His] frequencies at 206 and 222 cm(-)(1). These vibrations, which disappear upon addition of CO, are consistent with a neutral histidine (His388) as the proximal heme ligand. The refined crystal structure shows that there is a water molecule located between His388 and Tyr504 that can hydrogen bond to both residues. However, substitution of Tyr504 with alanine yields a mutant having 46% of the peroxidase activity of native oPGHS-1, establishing that bonding of Tyr504 to this water is not critical for catalysis. Collectively, our results show that the proximal histidine ligand in oPGHS-1 is electrostatically neutral. Thus, in contrast to most other peroxidases, a strongly basic proximal ligand is not necessary for peroxidase catalysis by oPGHS-1.  相似文献   

8.
Structural basis of human cytoglobin for ligand binding   总被引:3,自引:0,他引:3  
Cytoglobin (Cgb), a newly discovered member of the vertebrate globin family, binds O(2) reversibly via its heme, as is the case for other mammalian globins (hemoglobin (Hb), myoglobin (Mb) and neuroglobin (Ngb)). While Cgb is expressed in various tissues, its physiological role is not clearly understood. Here, the X-ray crystal structure of wild type human Cgb in the ferric state at 2.4A resolution is reported. In the crystal structure, ferric Cgb is dimerized through two intermolecular disulfide bonds between Cys38(B2) and Cys83(E9), and the dimerization interface is similar to that of lamprey Hb and Ngb. The overall backbone structure of the Cgb monomer exhibits a traditional globin fold with a three-over-three alpha-helical sandwich, in which the arrangement of helices is basically the same among all globins studied to date. A detailed comparison reveals that the backbone structure of the CD corner to D helix region, the N terminus of the E-helix and the F-helix of Cgb resembles more closely those of pentacoordinated globins (Mb, lamprey Hb), rather than hexacoordinated globins (Ngb, rice Hb). However, the His81(E7) imidazole group coordinates directly to the heme iron as a sixth axial ligand to form a hexcoordinated heme, like Ngb and rice Hb. The position and orientation of the highly conserved residues in the heme pocket (Phe(CD1), Val(E11), distal His(E7) and proximal His(F8)) are similar to those of other globin proteins. Two alternative conformations of the Arg84(E10) guanidium group were observed, suggesting that it participates in ligand binding to Cgb, as is the case for Arg(E10) of Aplysia Mb and Lys(E10) of Ngb. The structural diversities and similarities among globin proteins are discussed with relevance to molecular evolutionary relationships.  相似文献   

9.
KatG, the catalase-peroxidase from Mycobacterium tuberculosis, has been characterized by resonance Raman, electron spin resonance, and visible spectroscopies. The mutant KatG(S315T), which is found in about 50% of isoniazid-resistant clinical isolates, is also spectroscopically characterized. The electron spin resonance spectrum of ferrous nitrosyl KatG is consistent with a proximal histidine ligand. The Fe-His stretching vibration observed at 244 cm(-1) for ferrous wild-type KatG and KatG(S315T) confirms the imidazolate character of the proximal histidine in their five-coordinate high-spin complexes. The ferrous forms of wild-type KatG and KatG(S315T) are mixtures of six-coordinate low-spin and five-coordinate high-spin hemes. The optical and resonance Raman signatures of ferric wild-type KatG indicate that a majority of the heme exists in a five-coordinate high-spin state, but six-coordinate hemes are also present. At room temperature, more six-coordinate low-spin heme is observed in ferrous and ferric KatG(S315T) than in the WT enzyme. While the nature of the sixth ligand of LS ferric wild-type KatG is not completely clear, visible, resonance Raman, and electron spin resonance data of KatG(S315T) indicate that its sixth ligand is a neutral nitrogen donor. Possible effects of these differences on enzyme activity are discussed.  相似文献   

10.
Amino acid residues in the ligand binding pocket of human neuroglobin have been identified by site-directed mutagenesis and their properties investigated by resonance Raman and flash photolysis methods. Wild-type neuroglobin has been shown to have six-coordinate heme in both ferric and ferrous states. Substitution of His96 by alanine leads to complete loss of heme, indicating that His96 is the proximal ligand. The resonance Raman spectra of M69L and K67T mutants were similar to those of wild-type (WT) neuroglobin in both ferric and ferrous states. By contrast, H64V was six-coordinate high-spin and five-coordinate high-spin in the ferric and ferrous states, respectively, at acidic pH. The spectra were pH-dependent and six-coordinate with the low-spin component dominating at alkaline pH. In a double mutant H64V/K67T, the high-spin component alone was detected in the both ferric and the ferrous states. This implies that His64 is the endogenous ligand and that Lys67 is situated nearby in the distal pocket. In the ferrous H64V and H64V/K67T mutants, the nu(Fe-His) stretching frequency appears at 221 cm(-1), which is similar to that of deoxymyoglobin. In the ferrous CO-bound state, the nu(Fe-CO) stretching frequency was detected at 521 and 494 cm(-1) in WT, M69L, and K67T, while only the 494 cm(-1) component was detected in the H64V and H64V/K67T mutants. Thus, the 521 cm(-1) component is attributed to the presence of polar His64. The CO binding kinetics were biphasic for WT, H64V, and K67T and monophasic for H64V/K67T. Thus, His64 and Lys67 comprise a unique distal heme pocket in neuroglobin.  相似文献   

11.
Among the four types of hemoglobin (Hb) M with a substitution of a tyrosine (Tyr) for either the proximal (F8) or distal (E7) histidine in the α or β subunits, only Hb M Saskatoon (βE7Tyr) assumes a hexacoordinate structure and its abnormal subunits can be reduced readily by methemoglobin (metHb) reductase. This is distinct from the other three M Hbs. To gain new insight into the cause of the difference, we examined the ionization states of E7 and F8 Tyrs by UV resonance Raman (RR) spectroscopy and Fe–O(Tyr) bonding by visible RR spectroscopy. Hb M Iwate (αF8Tyr), Hb M Boston (αE7Tyr), and Hb M Hyde Park (βF8Tyr) exhibited two extra UV RR bands at 1,603 cm−1 (Y8a′) and 1,167 cm−1 (Y9a′) arising from deprotonated (ionized) Tyr, but Hb M Saskatoon displayed the UV RR bands of protonated (unionized) Tyr at 1,620 and 1,175 cm−1 in addition to those of deprotonated Tyr. Evidence for the bonding of both ionization states of Tyr to the heme in Hb M Saskatoon was provided by visible RR spectroscopy. These results indicate that βE7Tyr of Hb M Saskatoon is in equilibrium between protonated and deprotonated forms, which is responsible for facile reducibility. Comparison of the UV RR spectral features of metHb M with that of metHb A has revealed that metHb M Saskatoon and metHb M Hyde Park are in the R (relaxed) structure, similar to that of metHb A, whereas metHb M Iwate, metHb M Boston and metHb M Milwaukee are in the T (tense) quaternary structure.  相似文献   

12.
M Nagai  Y Yoneyama  T Kitagawa 《Biochemistry》1989,28(6):2418-2422
Resonance Raman spectra of four hemoglobins (Hbs) M with tyrosinate ligand, that is, Hb M Saskatoon (beta distal His----Tyr), Hb M Hyde Park (beta proximal His----Tyr), Hb M Boston (alpha distal His----Tyr), and Hb M Iwate (alpha proximal His----Tyr), were investigated in order to elucidate structural origins for distinctly facile reducibility of the abnormal subunit of Hb M Saskatoon in comparison with other Hbs M. All of the Hbs M exhibited the fingerprint bands for the Fe-tyrosinate proteins around 1600, 1500, and 1270 cm-1. However, Hb M Saskatoon had the lowest Fe-tyrosinate stretching frequency and was the only one to display the Raman spectral pattern of a six-coordinate heme for the abnormal beta subunit; the others displayed the patterns of a five-coordinate heme. The absorption intensity of Hb M Saskatoon at 600 nm indicated a transition with a midpoint pH at 5.2, whereas that of Hb M Boston was independent of pH from 7.2 to 4.8. The fingerprint bands for the tyrosinate coordination as well as the Fe-tyrosinate stretching band disappeared for Hb M Saskatoon at pH 5.0, and the resultant Raman spectrum resembled that of metHb A, while those bands were clearly observed for Hb M Boston at pH 5.0 and for two Hbs M at pH 10.0. These observations suggest that the unusual characteristics of the heme in the abnormal beta chain of Hb M Saskatoon result from the weak Fe-tyrosinate bond, which allows weak coordination of the proximal histidine, giving rise to the six-coordinate high-spin state at pH 7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
L L Xue  Y H Wang  Y Xie  P Yao  W H Wang  W Qian  Z X Huang  J Wu  Z X Xia 《Biochemistry》1999,38(37):11961-11972
To elucidate the role played by Val61 of cytochrome b(5), this residue of the tryptic fragment of bovine liver cytochrome b(5) was chosen for replacement with tyrosine (Val61Tyr), histidine (Val61His), glutamic acid (Val61Glu), and lysine (Val61Lys) by means of site-directed mutagenesis. The mutants Val61Tyr, Val61Glu, Val61His, and Val61Lys exhibit electronic spectra identical to that of the wild type, suggesting that mutation at Val61 did not affect the overall protein structure significantly. The redox potentials determined by differential pulse voltammetry were -10 (wild type), -25 (Val61Glu), -33 (Val61Tyr), 12 (Val61His), and 17 mV (Val61Lys) versus NHE. The thermal stabilities and urea-mediated denaturation of wild-type cytochrome b(5) and its mutants were in the following order: wild type > Val61Glu > Val61Tyr > Val61His > Val61Lys. The kinetics of denaturation of cytochrome b(5) by urea was also analyzed. The first-order rate constants of heme transfer between cytochrome b(5) and apomyoglobin at 20 +/- 0.2 degrees C were 0.25 +/- 0.01 (wild type), 0.42 +/- 0.02 (Val61Tyr), 0.93 +/- 0.04 (Val61Glu), 2.88 +/- 0.01 (Val61His), and 3.88 +/- 0.02 h(-)(1) (Val61Lys). The crystal structure of Val61His was determined using the molecular replacement method and refined at 2.1 A resolution, showing that the imidazole side chain of His61 points away from the heme-binding pocket and extends into the solvent, the coordination distances from Fe to NE2 atoms of two axial ligands are approximately 0.6 A longer than the reported value, and the hydrogen bond network involving Val61, the heme propionates, and three water molecules no longer exists. We conclude that the conserved residue Val61 is located at one of the key positions, the "electrostatic potential" around the heme-exposed area and the hydrophobicity of the heme pocket are determinant factors modulating the redox potential of cytochrome b(5), and the hydrogen bond network around the exposed heme edge is also an important factor affecting the heme stability.  相似文献   

14.
Cystathionine beta-synthase is a key heme and pyridoxal phosphate-dependent enzyme involved in homocysteine metabolism in humans. The role of the recently discovered heme in this protein remains an important open question. The axial ligands to the heme in both the ferrous and ferric states have been assigned as cysteine and histidine residues, respectively. In this study, we have examined the effect of ligation and spin state changes in the heme on the activity of the enzyme. Treatment of the ferric enzyme with HgCl2 results in the conversion of six-coordinate low-spin heme to five-coordinate high-spin heme and is paralleled by a loss of activity. In contrast, treatment of the ferrous enzyme with HgCl2 results in replacement of the cysteine ligand by an unidentified sixth ligand and retention of the six-coordinate state, and is also accompanied by loss of enzyme activity. Treatment of the five-coordinate HgCl2-treated enzyme with thiols, such as homocysteine, results in reversion to a six-coordinate state. Resonance Raman spectroscopy with 34S-labeled enzyme reveals the return of the endogenous thiol ligand under these conditions and rules out direct coordination by the thiolate of homocysteine to the heme.  相似文献   

15.
We have studied the unusual heme ligand structure of the ferric forms of a recombinant Chlamydomonas chloroplast hemoglobin and its several single-amino acid mutants by EPR, optical absorbance, and resonance Raman spectroscopy. The helical positions of glutamine-84, tyrosine-63, and lysine-87 are suggested to correspond to E7, B10, and E10, respectively, in the distal heme pocket on the basis of amino acid sequence comparison of mammalian globins. The protein undergoes a transition with a pK of 6.3 from a six-coordinate high-spin aquomet form at acidic pH to a six-coordinate low-spin form. The EPR signal of the low-spin form for the wild-type protein is absent for the Tyr63Leu mutant, suggesting that the B10 tyrosine in the wild-type protein ligates to the heme as tyrosinate. For the Tyr63Leu mutant, a new low-spin signal resembling that of alkaline cytochrome c (a His-heme-Lys species) is resolved, suggesting that the E10 lysine now coordinates to the heme. In the wild-type protein, the oxygen of the tyrosine-63 side chain is likely to share a proton with the side chain of lysine-87, suggested by the observation of a H/D sensitive resonance Raman line at 502 cm(-)(1) that is tentatively assigned as a vibrational mode of the Fe-O bond between the iron and the tyrosinate. We propose that the transition from the high-spin to the low-spin form of the protein occurs by deprotonation and ligation to the heme of the B10 tyrosine oxygen, facilitated by strong interaction with the E10 lysine side chain.  相似文献   

16.
Kinetic and EPR studies show that the first step in the reaction of NO with ferric myoglobin, opossum hemoglobin, and microperoxidase is the reversible formation of the H-NO complex: H + NO in equilibrium H-NO (where H = Mb+, or Hb+ OP, or MP+). The NO-combination rates are markedly affected by the presence or absence of the distal histidine. The distal histidine significantly reduces the NO-combination rates, perhaps by interaction between the distal histidine and the ferric iron. Thus the beta-chains of Hb+ OP and metmyoglobin show similar combination rates. In the absence of a distal histidine, the NO-combination rates in the alpha-chains of Hb+ OP are much faster and similar to those observed for the five-coordinate heme in microperoxidase. The loss of a water molecule from the six-coordination site is assumed to be the rate-limiting step.  相似文献   

17.
The truncated hemoglobin (Hb) from the cyanobacterium Synechocystis sp. PCC 6803 is a bis-histidyl hexacoordinate complex in the absence of exogenous ligands. This protein can form a covalent cross-link between His117 in the H-helix and the heme 2-vinyl group. Cross-linking, the physiological importance of which has not been established, is avoided with the His117Ala substitution. In the present work, H117A Hb was used to explore exogenous ligand binding to the heme group. NMR and thermal denaturation data showed that the replacement was of little consequence to the structural and thermodynamic properties of ferric Synechocystis Hb. It did, however, decelerate the association of cyanide ions with the heme iron. Full complexation required hours, instead of minutes, of incubation at optical and NMR concentrations. At neutral pH and in the presence of excess cyanide, binding occurred with a first-order dependence on cyanide concentration, eliminating distal histidine decoordination as the rate-limiting step. The cyanide complex of the H117A variant was characterized for the conformational changes occurring as the histidine on the distal side, His46 (E10), was displaced. Extensive rearrangement allowed Tyr22 (B10) to insert in the heme pocket and Gln43 (E7) and Gln47 (E11) to come in contact with it. H-bond formation to the bound cyanide was identified in solution with the use of (1)H(2)O/(2)H(2)O mixtures. Cyanide binding also resulted in a change in the ratio of heme orientational isomers, in a likely manifestation of heme environment reshaping. Similar observations were made with the related Synechococcus sp. PCC 7002 H117A Hb, except that cyanide binding was rapid in this protein. In both cases, the (15)N chemical shift of bound cyanide was reminiscent of that in peroxidases and the orientation of the proximal histidine was as in other truncated Hbs. The ensemble of the data provided insight into the structural cooperativity of the heme pocket scaffold and pointed to the reactive 117 site of Synechocystis Hb as a potential determinant of biophysical and, perhaps, functional properties.  相似文献   

18.
Yeast damage-associated response protein (Dap1p) and mouse progesterone receptor membrane component-1 protein (mPGRMC1p) belong to a highly conserved class of putative membrane-associated progesterone binding proteins (MAPR), with Dap1p and inner zone antigen (IZA), the rat homologue of mPGRMC1p, recently being reported to bind heme. While primary structure analysis reveals similarities to the cytochrome b(5) motif, neither of the two axial histidines responsible for ligation to the heme is present in any of the MAPR proteins. In this paper, EPR, MCD, CD, UV-vis, and general biochemical methods have been used to characterize the nature of heme binding in both Dap1p and a His-tagged, membrane anchor-truncated mPGRMC1p. As isolated, Dap1p is a tetramer which can be converted to a dimer upon addition of 150 mM salt. The heme is noncovalently attached, with a maximal, in vitro, heme loading of approximately 30%, for both proteins. CD and fluorescence spectroscopies indicate a well-ordered structure, suggesting the low level of heme loading is probably not due to improperly folded protein. EPR confirmed a five-coordinate, high-spin, ferric resting state for both proteins, indicating one axial amino acid ligand, in contrast to the six-coordinate, low-spin, ferric state of cytochrome b(5). The MCD spectrum confirmed this conclusion for Dap1p and indicated the axial ligand is most likely a tyrosine and not a histidine, or a cysteine; however, an aspartic acid residue could not be conclusively ruled out. Potential axial ligands, which are conserved in all MAPRs, were mutated (Y78F, D118A, and Y138F) and purified to homogeneity. The Y78F and D118A mutants were found to bind heme; however, Y138F did not. This result is consistent with the MCD data and indicates that Tyr138 is most likely the axial ligand to the heme in Dap1p.  相似文献   

19.
High-resolution resonance Raman spectra of the ferric, ferrous, and carbonmonoxy (CO)-bound forms of wild-type Escherichia coli-expressed Pseudomonas putida cytochrome P450cam and its P420 form are reported. The ferric and ferrous species of P450 and P420 have been studied in both the presence and absence of excess camphor substrate. In ferric, camphor-bound, P450 (mos), the E. coli-expressed P450 is found to be spectroscopically indistinguishable from the native material. Although substrate binding to P450 is known to displace water molecules from the heme pocket, altering the coordination and spin state of the heme iron, the presence of camphor substrate in P420 samples is found to have essentially no effect on the Raman spectra of the heme in either the oxidized or reduced state. A detailed study of the Raman and absorption spectra of P450 and P420 reveals that the P420 heme is in equilibrium between a high-spin, five-coordinate (HS,5C) form and low-spin six-coordinate (LS,6C) form in both the ferric and ferrous oxidation states. In the ferric P420 state, H2O evidently remains as a heme ligand, while alterations of the protein tertiary structure lead to a significant reduction in affinity for Cys(357) thiolate binding to the heme iron. Ferrous P420 also consists of an equilibrium between HS,5C and LS,6C states, with the spectroscopic evidence indicating that H2O and histidine are the most likely axial ligands. The spectral characteristics of the CO complex of P420 are found to be almost identical to those of a low pH of Mb. Moreover, we find that the 10-ns transient Raman spectrum of the photolyzed P420 CO complex possesses a band at 220 cm-1, which is strong evidence in favor of histidine ligation in the CO-bound state. The equilibrium structure of ferrous P420 does not show this band, indicating that Fe-His bond formation is favored when the iron becomes more acidic upon CO binding. Raman spectra of stationary samples of the CO complex of P450 reveal VFe-CO peaks corresponding to both substrate-bound and substrate-free species and demonstrate that substrate dissociation is coupled to CO photolysis. Analysis of the relative band intensities as a function of photolysis indicates that the CO photolysis and rebinding rates are faster than camphor rebinding and that CO binds to the heme faster when camphor is not in the distal pocket.  相似文献   

20.
Amphitrite ornata dehaloperoxidase (DHP) and Notomastus lobatus chloroperoxidase (NCPO) catalyze the peroxide-dependent dehalogenation of halophenols and halogenation of phenols, respectively. Both enzymes have histidine (His) as their proximal heme iron ligand. Crystallographic examination of DHP revealed that it has a globin fold [M.W. LaCount, E. Zhang, Y.-P. Chen, K. Han, M.M. Whitton, D.E. Lincoln, S.A. Woodin, L. Lebioda, J. Biol. Chem. 275 (2000) 18712-18716] and kinetics studies established that ferric DHP is the active state [R.L. Osborne, L.O. Taylor, K. Han, B. Ely, J.H. Dawson, Biochem. Biophys. Res. Commun. 324 (2004) 1194-1198]. NCPO likely has these same properties. Previous work with His-ligated heme proteins has revealed characteristic spectral distinctions between dioxygen binding globins and peroxide-activating peroxidases. Since DHP, and likely NCPO, is a peroxide-activating globin, we have sought to determine in the present investigation whether the ferric resting states of these two novel heme-containing enzymes are myoglobin-like or peroxidase-like. To do so, we have examined their exogenous ligand-free ferric states as well as their azide, imidazole and NO bound ferric adducts (and ferrous-NO complexes) with UV-Visible absorption and magnetic circular dichroism spectroscopy. We have also compared each derivative to the analogous states of horse heart myoglobin (Mb) and horseradish peroxidase (HRP). The spectra observed for parallel forms of DHP and NCPO are virtually identical to each other as well as to the spectra of the same Mb states, while being less similar to the spectra of corresponding HRP derivatives. From these data, we conclude that exogenous ligand-free ferric DHP and NCPO are six-coordinate with water and neutral His as ligands. This coordination structure is distinctly different from the ferric resting state of His-ligated peroxidases and indicates that DHP and NCPO do not activate bound peroxide through a mechanism dependent on a push effect imparted by a partially ionized proximal His as proposed for typical heme peroxidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号