首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the aim of identifying novel genes regulating cartilage development and degeneration, we screened a cartilage-specific expressed sequence tag database. Esophageal cancer related gene 4 (ECRG4) was selected, based on the criteria of ‘chondrocyte-specific’ and ‘unknown function.’ ECRG4 expression was particularly abundant in chondrocytes and cartilage, compared to various other mouse tissues. ECRG4 is a secreted protein that undergoes cleavage after secretion. The protein is specifically expressed in chondrocytes in a manner dependent on differentiation status. The expression is very low in mesenchymal cells, and dramatically increased during chondrogenic differentiation. The ECRG4 level in differentiated chondrocytes is decreased during hypertrophic maturation, both in vitro and in vivo, and additionally in dedifferentiating chondrocytes induced by interleukin-1β or serial subculture, chondrocytes of human osteoarthritic cartilage and experimental mouse osteoarthritic cartilage. However, ectopic expression or exogenous ECRG4 treatment in a primary culture cell system does not affect chondrogenesis of mesenchymal cells, hypertrophic maturation of chondrocytes or dedifferentiation of differentiated chondrocytes. Additionally, cartilage development and organization of extracellular matrix are not affected in transgenic mice overexpressing ECRG4 in cartilage tissue. However, ectopic expression of ECRG4 reduced proliferation of primary culture chondrocytes. While the underlying mechanisms of ECRG4 expression and specific roles remain to be elucidated in more detail, our results support its function as a marker of differentiated articular chondrocytes and cartilage destruction.  相似文献   

2.
Osteoarthritis (OA) is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol) (PEG) based hydrogels (PEG-DA) encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i) in tissue explanted from OA and normal human cartilage; ii) in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA) showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease.  相似文献   

3.
Insulin-like growth factor 1 (IGF-1) has poor anabolic efficacy in cartilage in osteoarthritis (OA), partly because of its sequestration by abnormally high levels of extracellular IGF-binding proteins (IGFBPs). We studied the effect of NBI-31772, a small molecule that inhibits the binding of IGF-1 to IGFBPs, on the restoration of proteoglycan synthesis by human OA chondrocytes. IGFBPs secreted by human OA cartilage or cultured chondrocytes were analyzed by western ligand blot. The ability of NBI-31772 to displace IGF-1 from IGFBPs was measured by radiobinding assay. Anabolic responses in primary cultured chondrocytes were assessed by measuring the synthesis of proteoglycans in cetylpyridinium-chloride-precipitable fractions of cell-associated and secreted 35S-labeled macromolecules. The penetration of NBI-31772 into cartilage was measured by its ability to displace 125I-labeled IGF-1 from cartilage IGFBPs. We found that IGFBP-3 was the major IGFBP secreted by OA cartilage explants and cultured chondrocytes. NBI-31772 inhibited the binding of 125I-labeled IGF-1 to IGFBP-3 at nanomolar concentrations. It antagonized the inhibitory effect of IGFBP-3 on IGF-1-dependent proteoglycan synthesis by rabbit chondrocytes. The addition of NBI-31772 to human OA chondrocytes resulted in the restoration or potentiation of IGF-1-dependent proteoglycan synthesis, depending on the IGF-1 concentrations. However, NBI-31772 did not penetrate into cartilage explants. This study shows that a new pharmacological approach that uses a small molecule inhibiting IGF-1/IGFBP interaction could restore or potentiate proteoglycan synthesis in OA chondrocytes, thereby opening exciting possibilities for the treatment of OA and, potentially, of other joint-related diseases.  相似文献   

4.
5.
Wnt inhibitory factor 1 (Wif-1) is a secreted antagonist of Wnt signalling. We recently demonstrated that this molecule is expressed predominantly in superficial layers of epiphyseal cartilage but also in bone and tendon. Moreover, we showed that Wif-1 is capable of binding to several cartilage-related Wnt ligands and interferes with Wnt3a-dependent Wnt signalling in chondrogenic cells. Here we provide evidence that the biological function of Wif-1 may not be confined to the modulation of Wnt signalling but appears to include the regulation of other signalling pathways. Thus, we show that Wif-1 physically binds to connective tissue growth factor (CTGF/CCN2) in vitro, predominantly by interaction with the C-terminal cysteine knot domain of CTGF. In vivo such an interaction appears also likely since the expression patterns of these two secreted proteins overlap in peripheral zones of epiphyseal cartilage. In chondrocytes CTGF has been shown to induce the expression of cartilage matrix genes such as aggrecan (Acan) and collagen2a1 (Col2a1). In this study we demonstrate that Wif-1 is capable to interfere with CTGF-dependent induction of Acan and Col2a1 gene expression in primary murine chondrocytes. Conversely, CTGF does not interfere with Wif-1-dependent inhibition of Wnt signalling. These results indicate that Wif-1 may be a multifunctional modulator of signalling pathways in the cartilage compartment.  相似文献   

6.
Wnt-induced-secreted-protein-1 (WISP-1) is a cysteine-rich, secreted factor belonging to the CCN family. These proteins have been implicated in the inhibition of metastasis; however, the mechanisms involved have not been described. We demonstrated that overexpression of WISP-1 in H460 lung cancer cells inhibited lung metastasis and in vitro cell invasion and motility. We investigated the possibility that WISP-1 may regulate activation of Rac, a small GTPase important for cytoskeletal reorganizations during motility. In an indirect assay, WISP-1-expressing cells exhibited marked reduction in Rac activation compared with control cells. Blocking antibodies to alpha(v)beta(5) and alpha(1) integrins restored Rac activation in WISP-1 cells, suggesting that the inhibitory effect of WISP-1 on Rac lies downstream of integrins. Constitutively activated Rac mutant (RacG12V) was transfected into WISP-1 cells to restore Rac activation and these WISP-1/RacG12V transfectants were used for further studies. We performed microarray and real-time PCR analyses to identify genes involved in invasion that may be differentially regulated by WISP-1. Here, we showed decreased expression of metalloproteinase-1 (MMP-1) in WISP-1 cells compared with controls but increased expression in WISP-1/RacG12V cells. In an invasion assay across collagen I, an MMP-1 target matrix, WISP-1 cells were significantly less invasive compared with controls, whereas WISP-1/RacG12V cells showed elevated invasion levels. This work illustrates a negatively regulated pathway by WISP-1 involving integrins and Rac in the down-regulation of invasion.  相似文献   

7.
8.
Wnt1-induced secreted protein-1 (WISP-1) is a member of the cysteine-rich 61, connective tissue growth factor, and nephroblastoma overexpressed (CCN) family of growth factors and is expressed in the heart at low basal levels. The purpose of this study was to investigate whether WISP-1 is upregulated in postinfarct myocardium and whether WISP-1 exerts prohypertrophic and mitogenic effects stimulating myocyte hypertrophy, cardiac fibroblast (CF) proliferation, and collagen expression. Male C57Bl/6 (25 g) mice underwent permanent occlusion of the left anterior descending coronary artery. mRNA and protein levels were analyzed by Northern and Western blot analyses. Cardiomyocyte hypertrophy was quantified by protein and DNA synthesis. CF proliferation was quantified by CyQuant assay, and soluble collagen release by Sircol assay. A time-dependent increase in WISP-1 expression was detected in vivo in the noninfarct zone of the left ventricle, which peaked at 24 h (3.1-fold, P < 0.01). Similarly, biglycan expression was increased by 3.71-fold (P < 0.01). IL-1beta and TNF-alpha expression preceded WISP-1 expression in vivo and stimulated WISP-1 expression in neonatal rat ventricular myocytes in vitro. WISP-1-induced cardiomyocyte hypertrophy was evidenced by increased protein (2.78-fold), but not DNA synthesis, and enhanced Akt phosphorylation and activity. Treatment of primary CF with WISP-1 significantly stimulated proliferation at 48 h (6,966 +/- 264 vs. 5,476 +/- 307 cells/well, P < 0.01) and enhanced collagen release by 72 h (18.4 +/- 3.1 vs. 8.4 +/- 1.0 ng/cell, P < 0.01). Our results demonstrate for the first time that WISP-1 and biglycan are upregulated in the noninfarcted myocardium in vivo, suggesting a positive amplification of WISP-1 signaling. WISP-1 stimulates cardiomyocyte hypertrophy, fibroblast proliferation, and ECM expression in vitro. These results suggest that WISP-1 may play a critical role in post-myocardial infarction remodeling.  相似文献   

9.
10.
11.
Liu ZJ  Li Y  Tan Y  Xiao M  Zhang J  Radtke F  Velazquez OC 《PloS one》2012,7(6):e38811
Fibroblasts are an integral component of stroma and important source of growth factors and extracellular matrix (ECM). They play a prominent role in maintaining tissue homeostasis and in wound healing and tumor growth. Notch signaling regulates biological function in a variety of cells. To elucidate the physiological function of Notch signaling in fibroblasts, we ablated Notch1 in mouse (Notch1(Flox/Flox)) embryonic fibroblasts (MEFs). Notch1-deficient (Notch1(-/-)) MEFs displayed faster growth and motility rate compared to Notch1(Flox/Flox) MEFs. Such phenotypic changes, however, were reversible by reconstitution of Notch1 activation via overexpression of the intracellular domain of Notch1 (NICD1) in Notch1-deficient MEFs. In contrast, constitutive activation of Notch1 signaling by introducing NICD1 into primary human dermal fibroblasts (FF2441), which caused pan-Notch activation, inhibited cell growth and motility, whereas cellular inhibition was relievable when the Notch activation was countered with dominant-negative mutant of Master-mind like 1 (DN-MAML-1). Functionally, "Notch-activated" stromal fibroblasts could inhibit tumor cell growth/invasion. Moreover, Notch activation induced expression of Wnt-induced secreted proteins-1 (WISP-1/CCN4) in FF2441 cells while deletion of Notch1 in MEFs resulted in an opposite effect. Notably, WISP-1 suppressed fibroblast proliferation, and was responsible for mediating Notch1's inhibitory effect since siRNA-mediated blockade of WISP-1 expression could relieve cell growth inhibition. Notch1-induced WISP-1 expression appeared to be Wnt11-dependent, but Wnt1-independent. Blockade of Wnt11 expression resulted in decreased WISP-1 expression and liberated Notch-induced cell growth inhibition. These findings indicated that inhibition of fibroblast proliferation by Notch pathway activation is mediated, at least in part, through regulating Wnt1-independent, but Wnt11-dependent WISP-1 expression.  相似文献   

12.
During endochondral ossification, two secreted signals, Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP), have been shown to form a negative feedback loop regulating the onset of hypertrophic differentiation of chondrocytes. Bone morphogenetic proteins (BMPs), another family of secreted factors regulating bone formation, have been implicated as potential interactors of the Ihh/PTHrP feedback loop. To analyze the relationship between the two signaling pathways, we used an organ culture system for limb explants of mouse and chick embryos. We manipulated chondrocyte differentiation by supplementing these cultures either with BMP2, PTHrP and Sonic hedgehog as activators or with Noggin and cyclopamine as inhibitors of the BMP and Ihh/PTHrP signaling systems. Overexpression of Ihh in the cartilage elements of transgenic mice results in an upregulation of PTHrP expression and a delayed onset of hypertrophic differentiation. Noggin treatment of limbs from these mice did not antagonize the effects of Ihh overexpression. Conversely, the promotion of chondrocyte maturation induced by cyclopamine, which blocks Ihh signaling, could not be rescued with BMP2. Thus BMP signaling does not act as a secondary signal of Ihh to induce PTHrP expression or to delay the onset of hypertrophic differentiation. Similar results were obtained using cultures of chick limbs. We further investigated the role of BMP signaling in regulating proliferation and hypertrophic differentiation of chondrocytes and identified three functions of BMP signaling in this process. First we found that maintaining a normal proliferation rate requires BMP and Ihh signaling acting in parallel. We further identified a role for BMP signaling in modulating the expression of IHH: Finally, the application of Noggin to mouse limb explants resulted in advanced differentiation of terminally hypertrophic cells, implicating BMP signaling in delaying the process of hypertrophic differentiation itself. This role of BMP signaling is independent of the Ihh/PTHrP pathway.  相似文献   

13.
Here we report on the structure, expression, and function of a novel cartilage-specific gene coding for a 17-kDa small, highly charged, and secreted protein that we termed Ucma (unique cartilage matrix-associated protein). The protein is processed by a furin-like protease into an N-terminal peptide of 37 amino acids and a C-terminal fragment (Ucma-C) of 74 amino acids. Ucma is highly conserved between mouse, rat, human, dog, clawed frog, and zebrafish, but has no homology to other known proteins. Remarkable are 1-2 tyrosine sulfate residues/molecule and dense clusters of acidic and basic residues in the C-terminal part. In the developing mouse skeleton Ucma mRNA is expressed in resting chondrocytes in the distal and peripheral zones of epiphyseal and vertebral cartilage. Ucma is secreted into the extracellular matrix as an uncleaved precursor and shows the same restricted distribution pattern in cartilage as Ucma mRNA. In contrast, antibodies prepared against the processed C-terminal fragment located Ucma-C in the entire cartilage matrix, indicating that it either diffuses or is retained until chondrocytes reach hypertrophy. During differentiation of an MC615 chondrocyte subclone in vitro, Ucma expression parallels largely the expression of collagen II and decreases with maturation toward hypertrophic cells. Recombinant Ucma-C does not affect expression of chondrocyte-specific genes or proliferation of chondrocytes, but interferes with osteogenic differentiation of primary osteoblasts, mesenchymal stem cells, and MC3T3-E1 pre-osteoblasts. These findings suggest that Ucma may be involved in the negative control of osteogenic differentiation of osteochondrogenic precursor cells in peripheral zones of fetal cartilage and at the cartilage-bone interface.  相似文献   

14.
As many structurally diverse chemicals have been reported to function as estrogens, evaluations for estrogenicity of compounds are of widespread concern. Recently, we identified WISP-2 (Wnt-1 inducible signaling pathway protein 2) as a novel estrogen-inducible gene in human breast cancer cells. In this study, we examined whether WISP-2 could be utilized as a marker for screening environmentally relevant compounds for estrogenicity. In MCF-7 cells, progesterone, dexamethasone, tri-iodothyronine, and 2,3,7,8-tetrachlorodibenzo-p-dioxin did not regulate the expression of WISP-2, indicating that its induction is highly specific for hormones that interact with the estrogen receptor. Western blot analysis detected WISP-2 protein induced by 17-beta-estradiol (E2), not only in the cell lysates but also in the culture supernatant of exposed cells, indicating that WISP-2 was a secreted protein. The induction of WISP-2 protein by E2 in the culture supernatant was dose-dependent with estimated EC(50) levels between 10 and 100 pM. Our results demonstrated the capacity to screen environmental compounds for estrogenicity via WISP-2 induction.  相似文献   

15.
16.
Aim of the study was to get a deeper insight in the mechanisms regulating avascularity of cartilaginious tissues. In the center of our interest was the expression of the anti-angiogenic fragment of collagen XVIII and its potency to inhibit angiogenesis. We observed a strong endostatin/collagen XVIII production in articular and fibrocartilage and an inhibitory potency concerning the VEGF-signalling pathway. INTRODUCTION: Cartilaginous tissue is mainly avascular and shows a limited intrinsic capacity for healing. Aim of this study was to investigate the expression of the antiangiogenic peptide endostatin/collagen XVIII in cartilage and fibrocartilage. RESULTS: In fetal epiphyseal cartilage of humans high endostatin/collagen XVIII levels could be detected by ELISA whereas significantly lower levels were found in articular cartilage of adults. In the fibrocartilaginous tissue of the menisci, there was no significant difference in the endostatin/collagen XVIII concentrations between samples of fetuses and adults. But in the menisci of adults, endostatin/collagen XVIII concentrations were higher in the internal avascular two thirds of the meniscus whereas in the fetal menisci higher endostatin/collagen XVIII concentrations were found in the external third. Endostatin/collagen XVIII immunostaining of rat articular cartilage shows that endostatin/collagen XVIII downregulation starts soon after birth. In fetal cartilage and fibrocartilage of rats and humans, endostatin/collagen XVIII could be immunostained in the extracellular matrix and in the pericellular matrix of endothelial cells, fibrochondrocytes and chondrocytes. In adult cells, weak endostatin/collagen XVIII immunostaining was restricted to the pericellular matrix of fibrochondrocytes and chondrocytes. The detection of endostatin/collagen XVIII could be verified by in situ hybridization. Chondrocytes in vitro released measurable amounts of endostatin/collagen XVIII into culture supernatants. Stimulation of chondrocytes with EGF, as an example of a growth factor, or dexamethasone had no influence on endostatin/collagen XVIII expression. Endostatin inhibited VEGF-induced phosphorylation of MAPK in chondrocytes. CONCLUSIONS: The spatial and temporal expression of endostatin/collagen XVIII in cartilaginous tissue and its potency regarding inactivation of VEGF signalling suggests that this antiangiogenic factor is important not only for the development but also for the maintenance of avascular zones in cartilage and fibrocartilage. EXPERIMENTAL PROCEDURES: We analyzed the spatial and temporal expression of endostatin/collagen XVIII--an endogenous angiogenesis inhibiting factor--in cartilage and fibrocartilage of humans and rats by immunohistochemical and biochemical (ELISA) methods and by in situ hybridization. To elucidate possible factors responsible for the induction or suppression of endostatin/collagen XVIII in cartilaginous tissues, chondrocytes (cell line C28/I2) were exposed to EGF and dexamethason. To study the possible interaction of endostatin/collagen XVIII with angiogenic factors, the immortalized human chondrocytes (C28/I2) have been incubated with VEGF and the phosphorylation of the MAPK Erk 1/2 (extracellular-regulated kinases), a known signal transduction pathway for VEGF has been determined under the influence of endostatin.  相似文献   

17.
To identify genes that maintain the homeostasis of adult articular cartilage and regenerate its lesions, we initially compared four types of chondrocytes: articular (AA) versus growth plate (AG) cartilage chondrocytes in adult rats, and superficial layer (IS) versus deep layer (ID) chondrocytes of epiphyseal cartilage in infant rats. Microarray analyses revealed that 40 and 186 genes had ≥10-fold higher expression ratios of AA/AG and IS/ID, respectively, and 16 genes showed ≥10-fold of both AA/AG and IS/ID ratios. The results were validated by real-time RT-PCR analysis. Among them, Hoxd1, Fgf18, and Esm1 were expressed more strongly in AA than in IS. Fgf18 was the extracellular and secreted factor that decreased glycosaminoglycan release and depletion from the cartilage, and enhanced proliferation of articular chondrocytes. Fgf18 was strongly expressed in the articular cartilage chondrocytes of adult rats. In a surgical rat osteoarthritis model, a once-weekly injection of recombinant human FGF18 (rhFGF18) given 3 weeks after surgery prevented cartilage degeneration in a dose-dependent manner at 6 and 9 weeks after surgery, with significant effect at 10 μg/week of rhFGF18. As the underlying mechanism, rhFGF18 strongly up-regulated Timp1 expression in the cell and organ cultures, and inhibition of aggrecan release by rhFGF18 was restored by addition of an antibody to Timp1. In conclusion, we have identified Fgf18 as a molecule that protects articular cartilage by gene expression profiling, and the anticatabolic effects may at least partially be mediated by the Timp1 expression.  相似文献   

18.
19.
Melanoma inhibitory activity/cartilage-derived retinoic acid-sensitive protein (MIA/CD-RAP) is a small soluble protein secreted from chondrocytes. It was identified as the prototype of a family of extracellular proteins adopting an SH3 domain-like fold. In order to study the consequences of MIA/CD-RAP deficiency in detail we used mice with a targeted gene disruption of MIA/CD-RAP (MIA−/−) and analyzed cartilage organisation and differentiation in in vivo and in vitro models. Cartilage formation and regeneration was determined in models for osteoarthritis and fracture healing in vivo, in addition to in vitro studies using mesenchymal stem cells of MIA−/− mice. Interestingly, our data suggest enhanced chondrocytic regeneration in the MIA−/− mice, modulated by enhanced proliferation and delayed differentiation. Expression analysis of cartilage tissue derived from MIA−/− mice revealed strong downregulation of nuclear RNA-binding protein 54-kDa (p54nrb), a recently described modulator of Sox9 activity. In this study, we present p54nrb as a mediator of MIA/CD-RAP to promote chondrogenesis. Taken together, our data indicate that MIA/CD-RAP is required for differentiation in cartilage potentially by regulating signaling processes during differentiation.  相似文献   

20.
The development of endochondral bones requires the coordination of signals from several cell types within the cartilage rudiment. A signaling cascade involving Indian hedgehog (Ihh) and parathyroid hormone related peptide (PTHrP) has been described in which hypertrophic differentiation is limited by a signal secreted from chondrocytes as they become committed to hypertrophy. In this negative-feedback loop, Ihh inhibits hypertrophic differentiation by regulating the expression of Pthrp, which in turn acts directly on chondrocytes in the growth plate that express the PTH/PTHrP receptor. Previously, we have shown that PTHrP also acts downstream of transforming growth factor beta (TGFbeta) in a common signaling cascade to regulate hypertrophic differentiation in embryonic mouse metatarsal organ cultures. As members of the TGFbeta superfamily have been shown to mediate the effects of Hedgehog in several developmental systems, we proposed a model where TGFbeta acts downstream of Ihh and upstream of PTHrP in a cascade of signals that regulate hypertrophic differentiation in the growth plate. This report tests the hypothesis that TGFbeta signaling is required for the effects of Hedgehog on hypertrophic differentiation and expression of PTHRP: We show that Sonic hedgehog (Shh), a functional substitute for Ihh, stimulates expression of Tgfb2 and Tgfb3 mRNA in the perichondrium of embryonic mouse metatarsal bones grown in organ cultures and that TGFbeta signaling in the perichondrium is required for inhibition of differentiation and regulation of Pthrp expression by Shh. The effects of Shh are specifically dependent on TGFbeta2, as cultures from Tgfb3-null embryos respond to Shh but cultures from Tgfb2-null embryos do not. Taken together, these data suggest that TGFbeta2 acts as a signal relay between Ihh and PTHrP in the regulation of cartilage hypertrophic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号