首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phytophthora drechsleri damping-off is one of the most important diseases of cucumber (Cucumis sativus). Salinity is a serious problem for crop production and affects diversity and activity of soil microorganisms. Application of salt-tolerant biocontrol agents may be beneficial in order to protect plants against pathogenic fungi in saline soils. In this study, a total of 717 Streptomyces isolates were isolated from the rhizosphere of cucumber, out of which two isolates showed more than 70% inhibitory effect against P. drechsleri and had cellulase activity in the presence and absence of NaCl. In a greenhouse experiment, two Streptomyces isolates with the highest antagonistic activity, strains C 201 and C 801, reduced seedling damping-off of cucumber caused by P. drechsleri by 77 and 80%, respectively, in artificially infested soils. Strain C 201 increased dry weight of seedlings up to 21% in greenhouse experiments. Phylogenetic analyses of 16S rRNA gene sequence reveals that strains C 201 and C 801 are closely related to S. rimosus and S. monomycini respectively. Increased activity of polyphenol oxidase (PPO) and peroxidase (POX) enzymes in Streptomyces-treated plants proved the biocontrol-induced systemic resistance (ISR) in cucumber plants against P. drechsleri.  相似文献   

2.

Objectives

To develop a genome editing method using the CRISPR/Cas9 system in Aspergillus oryzae, the industrial filamentous fungus used in Japanese traditional fermentation and for the production of enzymes and heterologous proteins.

Results

To develop the CRISPR/Cas9 system as a genome editing technique for A. oryzae, we constructed plasmids expressing the gene encoding Cas9 nuclease and single guide RNAs for the mutagenesis of target genes. We introduced these into an A. oryzae strain and obtained transformants containing mutations within each target gene that exhibited expected phenotypes. The mutational rates ranged from 10 to 20 %, and 1 bp deletions or insertions were the most commonly induced mutations.

Conclusions

We developed a functional and versatile genome editing method using the CRISPR/Cas9 system in A. oryzae. This technique will contribute to the use of efficient targeted mutagenesis in many A. oryzae industrial strains.
  相似文献   

3.
The genetic basis for phenicol resistance was examined in 38 phenicol-resistant clinical Escherichia coli isolates from poultry. Out of 62 isolates, 38 showed resistance for chloramphenicol and nine for florfenicol, respectively. Each strain also demonstrated resistance to a variety of other antibiotics. Molecular detection revealed that the incidence rates of the cat1, cat2, flo, flo-R, cmlA, and cmlB were 32, 29, 18, 13, 0, and 0%, respectively. Nineteen strains were tolerant to organic solvents. PCR amplification of the complete acrR (regulator/repressor) gene of five isolates revealed the amino acid changes in four isolates. DNA sequencing showed the non-synonymous mutations which change the amino acid, silent mutation, and nucleotide deletion in four isolates. MY09C10 showed neither deletion nor mutation in nucleotide. The AcrA protein of the AcrAB multidrug efflux pump was overexpressed in these strains. Complementation with a plasmid-borne wild-type acrR gene reduced the expression level of AcrA protein in the mutants and partially restored antibiotic susceptibility one- to fourfold. This study shows that mutations in acrR are an additional genetic basis for phenicol resistance.  相似文献   

4.
Aflatoxins are toxic and carcinogenic secondary metabolites produced primarily by the filamentous fungi Aspergillus flavus and Aspergillus parasiticus and cause toxin contamination in food chain worldwide. Aspergillus oryzae and Aspergillus sojae are highly valued as koji molds in the traditional preparation of fermented foods, such as miso, sake, and shoyu. Koji mold species are generally perceived of as being nontoxigenic and are generally recognized as safe (GRAS). Fungal isolates were collected from a California orchard and a few were initially identified to be A. sojae using β-tubulin gene sequences blasted against NCBI data base. These new isolates all produced aflatoxins B1, B2, G1, and G2 and were named as Pistachio Winter Experiment (PWE) strains. Thus, it is very important to further characterize these strains for food safety purposes. The full length of aflR gene of these new isolates was sequenced. Comparison of aflR DNA sequences of PWE, A. parasiticus and A. sojae, showed that the aflatoxigenic PWE strains had the six base insertion (CTCATG) similar to domesticated A. sojae, but a pre-termination codon TGA at nucleotide positions 1153–1155 was absent due to a nucleotide codon change from T to C. Colony morphology and scanning microscopic imaging of spore surfaces showed similarity of PWE strains to both A. parasiticus and A. sojae. Concordance analysis of multi locus DNA sequences indicated that PWE strains were closely linked between A. parasiticus and A. sojae. The finding documented the first report that such unique strains have been found in North America and in the world.  相似文献   

5.
Ninety-six methicillin-susceptible Staphylococcus aureus (MSSA) and 11 methicillin-resistant coagulase-negative staphylococci (MRCNS) were recovered from food of animal origin. Multi-drug resistance was detected in 34.1% of isolates. Tetracycline-resistant staphylococci harbored tetK gene (68.8%). Erythromycin/clindamycin-resistant staphylococci carried lnuA/lnuB genes frequently alone or combined with msrA gene. The sec gene was detected in 15.6% of MSSA and two isolates harbored the immune evasion cluster. The spa t337 predominated among MSSA strains. Two ermC-positive MRCNS isolates were observed, five mecA-positive carried SCCmec IVa and 6 were non-typeable by the IWG-SCC classification. These results demonstrate that food of animal origin can be a potential source for spreading of multidrug-resistance gene.  相似文献   

6.
Endophytes play an important role in the growth and development of the host. However, the study of endophytes is mostly focused on plants and animals, and reports on microorganisms associated with fungus are relatively rare. We studied the microorganisms associated with Tricholoma matsutake fruiting bodies picked from three main T. matsutake-producing areas in Sichuan, China, by both culture-dependent and culture- independent methods. Altogether 13 fungus, 15 yeast and 14 bacterial strains were isolated from the T. matsutake fruiting bodies. The most abundant cultivable fungus, yeast and bacteria isolates were assigned as Fusarium solanis, Cryptococcus sp. and Pseudomonas sp., respectively. Terminal-restriction fragment length polymorphism analysis (T-RFLP) showed that the bacteria in T. matsutake were abundant and diverse. Betaand gamma-proteobacteria, Acidobacteria, Bacteroidetes and Sphingobacterium were found in samples from all collecting sites. Among these bacteria, we may find some strains that can promote the growth of T. matsutake.  相似文献   

7.
Enormous advances in genome editing technology have been achieved in recent decades. Among newly born genome editing technologies, CRISPR/Cas9 is considered revolutionary because it is easy to use and highly precise for editing genes in target organisms. CRISPR/Cas9 technology has also been applied for removing unfavorable target genes. In this study, we used CRISPR/Cas9 technology to reduce ethyl carbamate (EC), a potential carcinogen, which was formed during the ethanol fermentation process by yeast. Because the yeast CAR1 gene encoding arginase is the key gene to form ethyl carbamate, we inactivated the yeast CAR1 gene by the complete deletion of the gene or the introduction of a nonsense mutation in the CAR1 locus using CRISPR/Cas9 technology. The engineered yeast strain showed a 98 % decrease in specific activity of arginase while displaying a comparable ethanol fermentation performance. In addition, the CAR1-inactivated mutants showed reduced formation of EC and urea, as compared to the parental yeast strain. Importantly, CRISPR/Cas9 technology enabled generation of a CAR1-inactivated yeast strains without leaving remnants of heterologous genes from a vector, suggesting that the engineered yeast by CRISPR/Cas9 technology might sidestep GMO regulation.  相似文献   

8.
The fungus Fusarium verticillioides is a maize pathogen that can produce fumonisin mycotoxins in ears under certain environmental conditions. Because fumonisins pose health risks to humans and livestock, control strategies with minimal risk to the environment are needed to reduce fumonisin contamination. Host-induced gene silencing is a promising technique in which double-stranded RNA expressed in the plant host is absorbed by an invading fungus and down-regulates genes critical for pathogenicity or mycotoxin production in the fungus. A key preliminary step of this technique is identification of DNA segments within the targeted fungal gene that can effectively silence the gene. Here, we used segments of the fumonisin biosynthetic gene FUM1 to generate double-stranded RNA in F. verticillioides. Several of the resulting transformants exhibited reduced FUM1 gene expression and fumonisin production (24- to 3675-fold reduction in fumonisin FB1). Similar reductions in fumonisin production resulted from double-stranded RNA constructs with segments of FUM8, another fumonisin biosynthetic gene (3.5- to 2240-fold reduction in fumonisin FB1). FUM1 or FUM8 silencing constructs were transformed into three isolates of F. verticillioides. Whole genome sequence analysis of seven transformants revealed that reductions in fumonisin production were not due to mutation of the fumonisin biosynthetic gene cluster and revealed a complex pattern of plasmid integration. These results suggest the cloned FUM1 or FUM8 gene segments could be expressed in maize for host-induced gene silencing of fumonisin production.  相似文献   

9.
10.
Cronobacter spp. has caused life-threatening neonatal infections mainly resulted from consumption of contaminated powdered infant formula. A total of 102 vegetable samples from retail markets were evaluated for the presence of Cronobacter spp. Thirty-five presumptive Cronobacter isolates were isolated and identified using API 20E and 16S rDNA sequencing analyses. All isolates and type strains were characterized using enterobacterial repetitive intergenic consensus sequence PCR (ERIC–PCR), and genetic profiles of cluster analysis from this molecular typing test clearly showed that there were differences among isolates from different vegetables. A polymerase chain reaction restriction fragment length polymorphism (PCR–RFLP) based on the amplification of the gyrB gene (1258 bp) was developed to differentiate among Cronobacter species. A new PCR–RFLP assay based on the amplification of the gyrB gene using Alu I and Hinf I endonuclease combination is established and it has been confirmed an accurate and rapid subtyping method to differentiate Cronobacter species. Sequence analysis of the gyrB gene was proven to be suitable for the phylogenetic analysis of the Cronobacter strains, which has much better resolution based on SNPs in the identification of Cronobacter species specificity than PCR–RFLP and ERIC–PCR. Our study further confirmed that vegetables are one of the most common habitats or sources of Cronobacter spp. contamination in the middle-east coastline of China.  相似文献   

11.
Trueperella pyogenes is one of the most important microorganisms causing metritis in post-partum cattle. Co-infection with other bacterial species such as Escherichia coli or Fusobacterium necrofurom increases the severity of the disease and the persistence of bacteria in utero. The aim of this study was to investigate the frequency of T. pyogenes strains, and their virulence and antimicrobial resistant profiles in metritis cases. The study was carried out on 200 samples obtained from metritis discharges of postpartum cattle on 18 farms around Tehran, Iran. Sixty-five T. pyogenes isolates (32.5%) were identified, of which 16 isolates were detected as pure cultures and the other 49 isolates from cultures most commonly mixed with E. coli or F. necrofurom. In terms of diversity in biochemical characteristic of T. pyogenes strains, 8 different biotypes were identified among the isolates. Single or multi antimicrobial resistance was observed in 48 isolates (73.9%), which was mostly against trimethoprim sulfamethoxazole, azithromycin, erythromycin and streptomycin. The tetracycline resistance gene tetW and macrolide resistance genes ermB and ermX were detected in 30, 18 and 25 isolates, respectively. In the screening of genes encoding virulence factors, fimA and plo genes were identified in all tested isolates. Genes encoding nanP, nanH, fimC, fimG, fimE and cbpA were detected in 50, 54, 45, 40, 50 and 37 of isolates, respectively. Thirteen different genotypes were observed in these T. pyogenes isolates. A significant association between clonal types and virulence factor genes, biochemical profile, CAMP test result, severity of the disease and sampling time was detected.  相似文献   

12.
Vagina which is one of the important reservoirs for Staphylococcus and in pregnant women pathogenic strains may infect the child during the birth or by vertical transmission. A total of 68 presumptive Staphylococcus strains isolated from human vagina were found to be gram-positive cocci, and only 32 (47%) isolates were found beta-hemolytic. Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) results confirmed 33 isolates belonged to Staphylococcus which consisting of 6 species, i.e., S. aureus (14), S. vitulinus (7), S. epidermidis (4), S cohnii (3), S. equorum (3), and S. succinus (2). Further, the result of antibiotic susceptibility tests showed that large proportions (76%–100%) of the isolates were resistant to multiple antibiotics and more often resistant to penicillin (100%), ampicillin (100%), oxacillin (97%), oxytetracycline (97%), vancomycin (97%), rifampin (85%), erythromycin (82%), and streptomycin (76%). In the present study, only the sec enterotoxin gene was detected in four S. aureus strains. DNA fingerprints of the 33 isolates that were generated using random amplified polymorphic DNA (RAPD) and enterobacterial repetitive intergenic consensus (ERIC) PCR analysis revealed great genetic relatedness of isolates. High prevalence of vaginal colonization with multiple antibiotic-resistant staphylococci among pregnant women was observed which were emerged from the single respective species clones that underwent evolution. The vertical transmission of these multiple antibiotic-resistant Staphylococcus species to the infant is possible; therefore, the findings of this study emphasize the need for regular surveillance of antibiotic-resistant bacterial strains in pregnant women in this area.  相似文献   

13.
14.
The gene encoding the xlnR xylanolytic activator of the heterologous fungus Aspergillus niger was incorporated into the Penicillium canescens genome. Integration of the xlnR gene resulted in the increase in a number of activities, i.e. endoxylanase, β-xylosidase, α-L-arabinofuranosidase, α-galactosidase, and feruloyl esterase, compared to the host P. canescens PCA 10 strain, while β-galactosidase, β-glucosidase, endoglucanase, and CMCase activities remained constant. Two different expression constructs were developed. The first consisted of the nucleotide sequence containing the mature P. canescens phytase gene under control of the axhA promoter region gene encoding A. niger (1,4)-β-D-arabinoxylan-arabinofuranohydrolase. The second construct combined the P. canescens phytase gene and the bgaS promoter region encoding homologous β-galactosidase. Both expression cassettes were transformed into P. canescens host strain containing xlnR. Phytase synthesis was observed only for strains with the bgaS promoter on arabinose-containing culture media. In conclusion, the bgaS and axhA promoters were regulated by different inducers and activators in the P. canescens strain containing a structural tandem of the axhA promoter and the gene of the xlnR xylanolytic activator.  相似文献   

15.
Bacterial strains were isolated from cassava-derived food products and, for the first time, from cassava by-products, with a focus on gari, a flour-like product, and the effluents from the production processes for gari and fufu (a dough also made from cassava flour). A total of 47 strains were isolated, all of which were tested to determine their resistance to acidic pH and to bile salt environments. Four of the 47 isolates tested positive in both environments, and these four isolates also showed antibacterial behaviour towards both Gram-positive and Gram-negative microbial pathogens (i.e. Methicillin-resistance Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Salmonella enteritidis, Escherichia coli, Escherichia coli (O157), Yersinia enterocolitica). In most cases, the antibacterial activity was related to bacteriocin production. Molecular identification analysis (16S rDNA and randomly amplified polymorphic DNA-PCR) revealed that the four isolates were different strains of the same species, Lactobacillus fermentum. These results demonstrate that bacteria isolated from cassava-derived food items and cassava by-products have interesting properties and could potentially be used as probiotics.  相似文献   

16.
Dicer, Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) comprise the core components of RNA-induced silencing complexes, which trigger RNA silencing. Here, we performed a complete analysis of the cucumber Dicer-like, AGO, and RDR gene families including the gene structure, genomic localization, and phylogenetic relationships among family members. We identified seven CsAGO genes, five CsDCL genes, and eight CsRDR genes in cucumber. Based on phylogenetic analysis, each of these genes families was categorized into three or four clades. The orthologs of CsAGOs, CsDCLs, and CsRDRs were identified in apple, peach, wild strawberry, foxtail millet, and maize, and the evolutionary relationships among the orthologous gene pairs were investigated. We also investigated the expression levels of CsAGOs, CsDCLs, and CsRDRs in various cucumber tissues. All CsAGOs were relatively higher upregulated in leaves and tendrils than in other organs, especially CsAGO1c, CsAGO1d, and CsAGO7. All CsDCL genes were relatively higher upregulated in tendrils, with almost no expression detected for CsDCL1, CsDCL4a, or CsDCL4b in other organs. In addition, CsRDR1a, CsRDR2, CsRDR3, and CsRDR6 had relatively higher upregulation in tendrils, whereas almost all CsRDRs were downregulation in other organs. The results of this study will facilitate further studies of gene silencing pathways in cucumber.  相似文献   

17.
Azotobacter species, free-living nitrogen-fixing bacteria, have been used as biofertilizers to improve the productivity of non-leguminous crops, including rice, due to their various plant growth-promoting traits. The purposes of this study were to characterize Azotobacter species isolated from rice rhizospheres in Taiwan and to determine the relationship between the species diversity of Azotobacter and soil properties. A total of 98 Azotobacter isolates were isolated from 27 paddy fields, and 16S rRNA gene sequences were used to identify Azotobacter species. The characteristics of these Azotobacter strains were analyzed including carbon source utilization and plant growth-promoting traits such as nitrogen fixation activity, indole acetic acid production, phosphate-solubilizing ability, and siderophore secretion. Of the 98 strains isolated in this study, 12 were selected to evaluate their effects on rice growth. Four species of Azotobacter were identified within these 98 strains, including A. beijerinckii, A. chroococcum, A. tropicalis, and A. vinelandii. Of these four species, A. chroococcum was predominant (51.0%) but A. beijerinckii had the highest level of nucleotide diversity. Strains within individual Azotobacter species showed diverse profiles in carbon source utilization. In addition, the species diversity of Azotobacter was significantly related to soil pH, Mn, and Zn. Members of the same Azotobacter species showed diverse plant growth-promoting traits, suggesting that the 98 strains isolated in this study may not equally effective in promoting rice growth. Of the 12 strains evaluated, A. beijerinckii CHB 461, A. chroococcum CHB 846, and A. chroococcum CHB 869 may be used to develop biofertilizers for rice cultivation because they significantly promoted rice growth. This study contributes to the selection of suitable Azotobacter strains for developing biofertilizer formulations and soil management strategies of Azotobacter for paddy fields.  相似文献   

18.
The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production.  相似文献   

19.
A gram-negative bacterium GXGL-4A was originally isolated from maize roots. It displayed nitrogen-fixing (NF) ability under nitrogen-free culture condition, and had a significant promotion effect on cucumber growth in the pot inoculation test. The preliminary physiological and biochemical traits of GXGL-4A were characterized. Furthermore, a phylogenetic tree was constructed based on 16S ribosomal DNA (rDNA) sequences of genetically related species. To determine the taxonomic status of GXGL-4A and further utilize its nitrogen-fixing potential, genome sequence was obtained using PacBio RS II technology. The analyses of average nucleotide identity based on BLAST+ (ANIb) and correlation indexes of tetra-nucleotide signatures (Tetra) showed that the NF isolate GXGL-4A is closely related to the Kosakonia radicincitans type strain DSM 16656. Therefore, the isolate GXGL-4A was eventually classified into the species of Kosakonia radicincitans and designated K. radicincitans GXGL-4A. A high consistency in composition and gene arrangement of nitrogen-fixing gene cluster I (nif cluster I) was found between K. radicincitans GXGL-4A and other Kosakonia NF strains. The mutants tagged with green fluorescence protein (GFP) were obtained by transposon Tn5 mutagenesis, and then, the colonization of gfp-marked K. radicincitans GXGL-4A cells on cucumber seedling root were observed under fluorescence microscopy. The preferential sites of the labeled GXGL-4A cell population were the lateral root junctions, the differentiation zone, and the elongation zone. All these results should benefit for the deep exploration of nitrogen fixation mechanism of K. radicincitans GXGL-4A and will definitely facilitate the genetic modification process of this NF bacterium in sustainable agriculture.  相似文献   

20.
Fish gut bacteria can be used as probiotics for aquaculture. The aim of this study is to screen and identify beneficial probiotic bacteria from the gut of Nile tilapia, Oreochromis niloticus. Nine out of one hundred thirty-five isolates were non-pathogenic through intraperitoneal injection and had antibacterial activities with at least a strain from the five isolated fish pathogens, Aeromonas sobria, Aeromonas hydrophila, Pseudomonas aeruginosa, Pseudomonas putida, and Staphylococcus aureus. Further tests showed that such isolates can survive in the presence of high bile concentration (10%) and at different acidic pH values. A strains (14HT) was sensitive to all selected antibiotics, two strains were (9HT and 11HT) resistant to streptomycin and three strains (9HT, 11HT and 38HT) had resistance to two antibiotics. Four isolates (11HT, 33HT, 38HT and 41HT) had an amylase and a protease activities and one strain (47HT) showed only amylase activity. Based on 16S rRNA gene analysis, the isolated strains were identified as follows: Lactococcus lactis (8HT, 9HT, 11HT and 33HT); Enterococcus faecalis (14HT), Lysinibacillus sp. (38HT) and Citrobacter freundii (39HT, 41HT and 47HT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号