首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cyclitol 1d-4-O-methyl-myo-inositol (d-ononitol) is accumulated in certain legumes in response to abiotic stresses. S-Adenosyl-l-methionine:myo-inositol 6-O-methyltransferase (m6OMT), the enzyme which catalyses the synthesis of d-ononitol, was extracted from stems of Vigna umbellata Ohwi et Ohashi and purified to apparent homogeneity by a combination of conventional chromatographic techniques and by affinity chromatography on immobilized S-adenosyl-l-homocysteine (SAH). The purified m6OMT was photoaffinity labelled with S-adenosyl-l-[14C-methyl]methionine. The native molecular weight was determined to be 106 kDa, with a subunit molecular weight of 40 kDa. Substrate-saturation kinetics of m6OMT for myo-inositol and S-adenosyl-l-methionine (SAM) were Michaelis-Menten type with K m values of 2.92 mM and 63 M, respectively. The SAH competitively inhibited the enzyme with respect to SAM (K i of 1.63 M). The enzyme did not require divalent cations for activity, but was strongly inhibited by Mn2+, Zn2+ and Cu2+ and sulfhydryl group inhibitors. The purified m6OMT was found to be highly specific for the 6-hydroxyl group of myo-inositol and showed no activity on other naturally occurring isomeric inositols and inositol O-methyl-ethers. Neither d-ononitol, nor d-3-O-methyl-chiro-inositol, d-1-O-methyl-muco-inositol or d-chiro-inositol (end products of the biosynthetic pathway in which m6OMT catalyses the first step), inhibited the activity of the enzyme.Abbreviations DTT dithiothreitol - m6OMT myo-inositol 6-O-methyltransferase - SAH S-adenosyl-l-homocysteine - SAM S-adenosyl-l-methionine We are greatful to Professor M. Popp (University of Vienna) for helpful discussion and comment. This work was supported by Grant P09595-BIO from the Austrian Science Foundation (FWF).  相似文献   

2.
Edward B. Tucker 《Planta》1988,174(3):358-363
pH-buffered carboxyfluorescein (Buffered-CF) alone (control), or Buffered-CF solutions containing one of the following: (1)d-myo-inositol (I); (2)d-myo-inositol 2-monophosphate (IP1); (3)d-myo-inositol 1,4-bisphosphate (IP2); (4)d-myo-inositol 1,4,5-trisphosphate (IP3); (5)d-fructose 2,6-diphosphate (F-2,6P2) were microinjected into the terminal cells of staminal hairs ofSetcreasea purpurea Boom. Passage of the CF from this terminal cell along the chain of cells towards the filament was monitored for 5 min using fluorescence microscopy and quantified using computer-assisted fluorescence-intensity video analysis. Cell-to-cell transport of CF in hairs microinjected with Buffered-CF containing either I, IP1 or F-2,6P2 was similar to that in hairs microinjected with Buffered-CF only. On the other hand, cell-to-cell transport of CF in hairs microinjected with Buffered-CF containing either IP2 or IP3 was inhibited. These results indicate that polyphosphoinositols may be involved in the regulation of intercellular transport of low-molecular-weight, hydrophilic molecules in plants.Abbreviations CF 5(6)Carboxyfluorescein - DG diacylglycerol - F2, 6P2 d-fructose 2,6-diphosphate - I d-myo-inositol - IP1 d-myo-inositol 2-monophosphate - IP2 d-myo-inositol 1,4-bisphosphate - IP3 d-myo-inositol 1,4,5-trisphosphate  相似文献   

3.
The two-microelectrode voltage clamp technique was used to examine the kinetics and substrate specificity of the cloned renal Na+/myo-inositol cotransporter (SMIT) expressed in Xenopus oocytes. The steady-state myo-inositol-induced current was measured as a function of the applied membrane potential (V m ), the external myo-inositol concentration and the external Na+ concentration, yielding the kinetic parameters: K 0.5 MI , K 0.5 Na , and the Hill coefficient n. At 100 mM NaCl, K 0.5 MI was about 50 m and was independent of V m . At 0.5 mm myo-inositol, K 0.5 Na ranged from 76 mm at V m =–50 mV to 40 mm at V m =–150 mV. n was voltage independent with a value of 1.9±0.2, suggesting that two Na+ ions are transported per molecule of myo-inositol. Phlorizin was an inhibitor with a voltage-dependent apparent K I of 64 m at V m =–50 mV and 130 m at V m = –150 mV. To examine sugar specificity, sugar-induced steady-state currents (at V m =–150 mV) were recorded for a series of sugars, each at an external concentration of 50 mm. The substrate selectivity series was myo-inositol, scyllo-inositol > l-fucose > l-xylose > l-glucose, d-glucose, -methyl-d-glucopyranoside > d-galactose, d-fucose, 3-O-methyl-d-glucose, 2-deoxy-d-glucose > d-xylose. For comparison, oocytes were injected with cRNA for the rabbit intestinal Na+/glucose cotransporter (SGLT1) and sugar-induced steady-state currents (at V m =–150 mV) were measured. For oocytes expressing SGLT1, the sugar selectivity was: d-glucose, -methyl-d-glucopyranoside, d-galactose, d-fucose, 3-O-methyl-d-glucose > d-xylose, l-xylose, 2-deoxy-d-glucose > myo-inositol, l-glucose, l-fucose. The ability of SMIT to transport glucose and SGLT1 to transport myo-inositol was independently confirmed by monitoring the Na+-dependent uptake of 3H-d-glucose and 3H-myo-inositol, respectively. In common with SGLT1, SMIT gave a relaxation current in the presence of 100 mm Na+ that was abolished by phlorizin (0.5 mm). This transient current decayed with a voltage-sensitive time constant between 10 and 14 msec. The presteady-state current is apparently due to the reorientation of the cotransporter protein in the membrane in response to a change in V m . The kinetics of SMIT is accounted for by an ordered six-state nonrapid equilibrium model. Present address: W.M. Keck Biotechnology Resource Laboratory, Boyer Center for Molecular Medicine, Rm, 305A, Yale University, 295 Congress Ave., New Haven, Connecticut 06536-0812 Present address: National Institute for Physiological Sciences, Department of Cell Physiology, Okazaka, 444, JapanContributed equally to this workWe thank John Welborn for the HPLC analysis of the sugar substrates. This work was supported by grants from the National Institutes of Health DK19567, DK42479 and NS25554.  相似文献   

4.
During imbibition, exogenous myo-inositol (MI) was readily introduced into the free MI pool of germinating wheat (Triticum aestivum L.). Maximum uptake, 70 g per caryopsis or 1.5 mg g–1 of caryopsis, was reached at 0.05 M MI. Movement of free MI within the germinating caryopsis was traced with [2-3H]MI by two procedures, uptake by imbibition and injection into softened endosperm. The former procedure was useful during initial stages of germination; the latter provided a means of tracing the metabolic fate of MI generated by hydrolysis of phytate during mobilization of reserves within the caryopsis. In both procedures, the bulk of the added label was transferred to the seedling where it appeared in uronosyl and pentosyl units of 80% ethanol-insoluble polysaccharides, 2-O, C-Methylene-MI, an inhibitor of the MI oxidation pathway, blocked the utilization of [2-3H]MI as well as d-[114C]glucose for biogenesis of pentose-and uronic-acid-containing polysaccharides.Abbreviations MI myo-inositol - OCM-MI 2-O, C-methylene-myo-inositol  相似文献   

5.
High-pressure liquid chromatography (HPLC) analysis established myo-inositol pentakisphosphate as the final product of phytate dephosphorylation by the phytate-degrading enzyme from Pantoea agglomerans. Neither product inhibition by phosphate nor inactivation of the Pantoea enzyme during the incubation period were responsible for the limited phytate hydrolysis as shown by addition of phytate-degrading enzyme and phytate, respectively, after the observed stop of enzymatic phytate degradation. In additon, the Pantoea enzyme did not possess activity toward the purified myo-inositol pentakisphosphate. Using a combination of High-Performance Ion Chromatography (HPIC) analysis and kinetic studies, the nature of the generated myo-inositol pentakisphosphate was established. The data demonstrate that the phytate-degrading enzyme from Pantoea agglomerans dephosphorylates myo-inositol hexakisphosphate in a stereospecific way to finally D-myo-inositol(1,2,4,5,6)pentakisphosphate.  相似文献   

6.
7.
Some of inositol derivatives have been reported to help the action of insulin stimulating glucose uptake in skeletal muscle cells. Rat L6 myotubes were employed in an attempt to develop an in vitro model system for investigation of the possible insulin-like effect of eight inositol derivatives, namely allo-inositol, d-chiro-inositol l-chiro-inositol, epi-inositol, muco-inositol, myo-inositol, scyllo-inositol and d-pinitol. At a higher concentration of 1 mM seven inositol derivatives other than myo-inositol were able to stimulate glucose uptake, while at 0.1 mM only d-chiro-inositol, l-chiro-inositol, epi-inositol and muco-inositol could induce glucose uptake, indicating their significant insulin-mimetic activity. Immunoblot analyses revealed that at least d-chiro-inositol, l-chiro-inositol, epi-inositol, muco-inositol and d-pinitol were able to induce translocation of glucose transporter 4 (GLUT4) to plasma membrane not only in L6 myotubes but also in skeletal muscles of rats ex vivo. These results demonstrated that L6 myotubes appeared efficient as an in vitro system to identify inositol derivatives exerting an insulin-like effect on muscle cells depending on the induced translocation of GLUT4.  相似文献   

8.
l-myo-inositol 1-phosphate synthase (EC 5.5.1.4; MIPS) catalyzes the first rate limiting conversion of d-glucose 6-phosphate to l-myo-inositol 1-phosphate in the inositol biosynthetic pathway. In an earlier communication we have reported two forms of MIPS in Synechocystis sp. PCC6803 (Chatterjee et al. in Planta 218:989–998, 2004). One of the forms with a ~50 kDa subunit has been found to be coded by an as yet unassigned ORF, sll1722. In the present study we have purified the second isoform of MIPS as a ~65 kDa protein from the crude extract of Synechocystis sp. PCC6803 to apparent homogeneity and biochemically characterized. MALDI-TOF analysis of the 65 kDa protein led to its identification as acetolactate synthase large subunit (EC 2.2.1.6; ALS), the putatively assigned ORF sll1981 of Synechocystis sp. PCC6803. The PCR amplified ~1.6 kb product of sll1981 was found to functionally complement the yeast inositol auxotroph, FY250 and could be expressed as an immunoreactive ~65 kDa MIPS protein in the natural inositol auxotroph, Schizosaccharomyces pombe. In vitro MIPS activity and cross reactivity against MIPS antibody of purified recombinant sll1981 further consolidated its identity as the second probable MIPS gene in Synechocystis sp. PCC6803. Sequence comparison along with available crystal structure analysis of the yeast MIPS reveals conservation of several amino acids in sll1981 essential for substrate and co-factor binding. Comparison with other prokaryotic and eukaryotic MIPS sequences and phylogenetic analysis, however, revealed that like sll1722, sll1981 is quite divergent from others. It is probable that sll1981 may code for a bifunctional enzyme protein having conserved domains for both MIPS and acetolactate synthase (ALS) activities.Anirban Chatterjee and Krishnarup Ghosh Dastidar contributed equally.  相似文献   

9.
Summary The biosynthesis of phytic acid is known to be catalyzed by enzymes causing a stepwise phosphorylation of myo-inositol or 1l-myo-inositol 1-phosphate with adenosine triphosphate as phosphate donor. The kinases responsible for these phosphorylations in Lemna gibba were purified by affinity chromatography on a Sepharose gel carrying myo-inositol 2-phosphate at the binding site. Three fractions with enzymatic activity could be identified; in the first one, we find myo-inositol kinase (EC 2.7.1.64) phosphorylating myo-inositol to 1l-myo-inositol 1-phosphate; the second one brings about the phosphorylation of myo-inositol trisphosphate to phytic acid; the third one phosphorylates myo-inositol 1-phosphate to a myo-inositol trisphosphate. An enzyme oxidizing 1l-myo-inositol 1-phosphate to an uronic acid derivative is found in the first two fractions. In the presence of ATP, Mg2+ Mn2+, and the second and the third enzyme fractions in an appropriate mixture, 1l-myo-inositol 1-phosphate can be phosphorylated to phytic acid. The structure of the trisphosphate acting as an intermediate is not yet known.  相似文献   

10.
S. Harran  D. B. Dickinson 《Planta》1978,141(1):77-82
Tobacco (Nicotiana tabacum L.) cells were cultured in a liquid medium which contained sucrose as a source of carbon and energy. Various cell-wall constituents and wall precursors (L-arabinose, D-xylose, D-galactose, D-mannose, D-glucuronate, myo-inositol) were added to cells growing in this medium to by-pass possible rate-limiting steps in the relevant metabolic pathways. None of these compounds stimulated growth as measured by increase in fresh weight; myo-inositol did cause a slight increase and L-arabinose a decrease in dry weight accumulation compared to controls grown on sucrose only. Although myo-inositol was not needed for rapid growth, tracer level amounts of [2-3H]myo-inositol were rapidly absorbed and metabolized. Label was incorporated into the uronide and pentose residues of cell walls and exocellular polysaccharide.  相似文献   

11.
Chatterjee A  Majee M  Ghosh S  Majumder AL 《Planta》2004,218(6):989-998
l-myo-Inositol 1-phosphate synthase (EC 5.5.1.4; MIPS) catalyzes conversion of glucose 6-phosphate to l-myo-inositol 1-phosphate, the first and the rate-limiting step in the production of inositol, and has been reported from evolutionarily diverse organisms. Two forms of the enzyme have been characterized from higher plants, viz. cytosolic and chloroplastic, and the presence of MIPS has been earlier reported from the cyanobacteria (e.g. Spirulina sp.), the presumed chloroplast progenitors. The present study demonstrates possible multiple forms of MIPS and identifies the gene for one of them in the cyanobacterium Synechocystis sp. PCC 6803. Following detection of at least two immunologically cross-reactive MIPS forms, we have been able to identify from the fully sequenced Synechocystis genome an as yet unassigned open reading frame (ORF), sll1722, coding for the approx. 50-kDa MIPS protein, by using biochemical, molecular and bioinformatics tools. The DNA fragment corresponding to sll1722 was PCR-amplified and functional identity of the gene was confirmed by a complementation assay in Saccharomyces cerevisiae mutants containing a disrupted INO1 gene for the yeast MIPS. The sll1722 PCR product was cloned in Escherichia coli expression vector pET20b and the isopropyl -d-thiogalactopyranoside (IPTG)-induced overexpressed protein product was characterized following complete purification. Comparison of the sll1722 sequences with other MIPS sequences and its phylogenetic analysis revealed that the Synechocystis MIPS gene is quite divergent from the others.Abbreviations CBB Coomassie Brilliant Blue - EST Expressed sequence tag - G6P d-Glucose 6-phosphate - IPTG Isopropyl -d-thiogalactopyranoside - MIPS lmyo-Inositol 1-phosphate synthase - ORF Open reading frame  相似文献   

12.
Marine actinomycetes have generated much recent interest as a potentially valuable source of novel antibiotics. Like terrestrial actinomycetes the marine actinomycetes are shown here to produce mycothiol as their protective thiol. However, a novel thiol, U25, was produced by MAR2 strain CNQ703 upon progression into stationary phase when secondary metabolite production occurred and became the dominant thiol. MSH and U25 were maintained in a reduced state during early stationary phase, but become significantly oxidized after 10 days in culture. Isolation and structural analysis of the monobromobimane derivative identified U25 as a homolog of mycothiol in which the acetyl group attached to the nitrogen of cysteine is replaced by a propionyl residue. This N-propionyl-desacetyl-mycothiol was present in 13 of the 17 strains of marine actinomycetes examined, including five strains of Salinispora and representatives of the MAR2, MAR3, MAR4 and MAR6 groups. Mycothiol and its precursor, the pseudodisaccharide 1-O-(2-amino-2-deoxy-α-d-glucopyranosyl)-d-myo-inositol, were found in all strains. High levels of mycothiol S-conjugate amidase activity, a key enzyme in mycothiol-dependent detoxification, were found in most strains. The results demonstrate that major thiol/disulfide changes accompany secondary metabolite production and suggest that mycothiol-dependent detoxification is important at this developmental stage.  相似文献   

13.
In the present study we have investigated the effect of exogenous cyclitols on accumulation of their galactosides and raffinose family oligosaccharides (RFOs) in maturing smooth tare (Vicia tetrasperma [L.] Schreb) seeds. Feeding d-pinitol to pods of smooth tare increased the amount of free d-pinitol and its galactosides: galactopinitol A, galactopinitol B, di- and trigalactopinitol A in seeds. Similarly, feeding d-chiro-inositol, which does not occur naturally in Vicia seeds, resulted in the transport of this cyclitol in the seed, and caused accumulation of high levels of d-chiro-inositol galactosides (fagopyritol B1, B2 and B3). Accumulation of both cyclitols and their galactosides drastically reduced accumulation of verbascose and, to a lesser extent, stachyose and di-galactosyl- myo-inositol. Feeding d-chiro-inositol also decreased accumulation of di- and tri-galactosyl pinitols, naturally occurring in seeds. Inhibition of RFOs accumulation by elevated levels of free cyclitols indicates competition between biosynthesis of both types galactosides, and similarity of both biosynthetic pathways in smooth tare seeds.  相似文献   

14.
Summary Cotyledonary nodes, excised cotyledons, and hypocotyl segments of six varieties ofVigna mungo andV. radiata have been tested for their morphogenic potential on media containing a range of hormonal combinations including benzyladenine, kinetin, thidiazuron (TDZ), and zeatin. Multiple shoots developed on cotyledonary node explants in all varieties tested on basal medium containing cytokinin. Presence of both the cotyledons, either full or half, resulted in a maximum number of shoots produced. Shoot bud regeneration was achieved via meristem formation on excised cotyledons on Murashige-skoog basal medium with B5 vitamins supplemented with TDZ. Mature plants had normal phenotypes.V. mungo var. PS1 andV. radiata var. Pusa 105 were found to be the most responsive varieties for shoot regneration. The histology ofin vitro organogenesis was studied.  相似文献   

15.
The mechanism preferentially regulating accumulation of raffinose family oligosaccharides (RFOs) or galactosyl cyclitols in legume seeds still remains unknown. The broad range of raffinose family oligosaccharides and galactosyl pinitols in the composition of seeds of Vicia genus gives researchers an exceptional opportunity for investigations on relationships in biosynthesis of both types of α-d-galactosides. Feeding explants of Vicia species radically different in the composition of RFOs and galactosyl pinitols with basic galactose acceptors, sucrose (for RFOs) or cyclitols (for galactosyl cyclitols) can be a helpful method for assessment of their regulatory role in accumulation of α-d-galactosides in seeds. Garden vetch (Vicia sativa L.) seeds, naturally accumulating RFOs, demonstrated an ability to take up and use exogenously applied d-pinitol and d-chiro-inositol for synthesis of their mono-, di- and tri-galactosides. Together with the accumulation of new galactosides, the concentration of RFOs decreased. In fine-leaved (Vicia tenuifolia Roth.) vetch seeds such a remarkably high concentration of galactosyl pinitols (GPs) was discovered that they nearly replaced RFOs, which is unique among legumes. If the accumulation of both types of galactosides is correlated with concentration of galactose acceptors, elevated levels of sucrose or myo-inositol should promote accumulation of RFOs, instead of GPs. Unexpectedly, feeding fine-leaved vetch raceme explants with myo-inositol or sucrose promoted accumulation of GPs, but not of RFOs. Our comparison of accumulation and biosynthesis of both types of galactosides (RFOs and GPs) throughout development and maturation of seeds from fine-leaved vetch has indicated that preferential accumulation of GPs is associated with the drying of seeds during maturation. Different patterns in activities of enzymes engaged in RFOs’ biosynthetic pathway and galactosyltransferases involved in biosynthesis of GPs indicated that distinct forms of enzymes can operate in both pathways. The feeding of explants with d-chiro-inositol causes accumulation of fagopyritols B1 in seeds of both Vicia species, which suggests presence of the same or a similar form of galactinol synthase. Accumulation of fagopyritols in fine-leaved vetch seeds did not affect accumulation of RFOs or galactosyl pinitols.  相似文献   

16.
Two trisaccharide glycosides,p-trifluoroacetamidophenylethyl 3-O-(2-acetamido-2-deoxy--d-galactopyranosyl)-2-O-(-l-fucopyranosyl)--d-galactopyranoside andp-trifluoroa-cetamidophenylethyl 2-O-(-l-fucopyranosyl)-3-O-(-d-galactopyranosyl)--d-galactopyranoside, corresponding to the human blood group A and B determinants, were synthesized. A key fucosylgalactosyl disaccharide derivative was glycosylated with galactosaminyl or galactosyl donors, respectively. Dimethyl (thiomethyl)sulfonium tetrafluoroborate was used for thioglycoside activation in coupling reactions.  相似文献   

17.
Potentiometric, conductometric and 31P NMR titrations have been applied to study interactions between myo-inositol hexakisphosphate (phytic acid), (±)-myo-inositol 1,2,3,5-tetrakisphosphate and (±)-myo-inositol 1,2,3-trisphosphate with iron(III) ions. Potentiometric and conductometric titrations of myo-inositol phosphates show that addition of iron increases acidity and consumption of hydroxide titrant. By increasing the Fe(III)/InsP6 ratio (from 0.5 to 4) 3 mol of protons are released per 2 mol of iron(III). At first, phytates coordinate iron octahedrally between P2 and P1,3. The second coordination site represents P5 and neighbouring P4,6 phosphate groups. Complexation is accompanied with the deprotonation of P1,3 and P4,6 phosphate oxygens. At higher concentration of iron(III) intermolecular P–O–Fe–O–P bonds trigger formation of a polymeric network and precipitation of the amorphous Fe(III)–InsP6 aggregates. 31P NMR titration data complement the above results and display the largest chemical shift changes at pD values between 5 and 10 in agreement with strong interactions between iron and myo-inositol phosphates. The differences in T1 relaxation times of phosphorous atoms have shown that phosphate groups at positions 1, 2 and 3 are complexated with iron(III). The interactions between iron(III) ions and inositol phosphates depend significantly on the metal to ligand ratio and an attempt to coordinate more than two irons per InsP6 molecule results in an unstable heterogeneous system.  相似文献   

18.
Rhizobium strains nodulating summer legumes cow pea [Vigna unguiculata (L.)], green gram [V. radiata (L.) (Wilczek)], black gram [V. mungo (L.) (Hepper)] and cluster bean [Cyamopsis tetragonoloba (L.) (Taub)] and a winter legume chick pea [Cicer arietinum (L.)] were surveyed in the Northern Plains of India and screened for hydrogenase activity to determine distribution of Hup character in the native ecosystem. It was observed that 56% of the Rhizobium strains of summer legumes were Hup+ whereas that of the winter legume, chick pea, were all Hup-. Ex planta acetylene reduction activity was observed in most of the Hup+ but not in the Hup- strains of any of the host species. In summer legume, mixed inoculation of Hup+ and Hup- strains, under sterilized as well as unsterilized soil conditions, showed that the host species were predominantly nodulated with Hup+ strain.  相似文献   

19.
The two generaPlectranthus andIsodon are compared and found to be very dissimilar.Isodon ist considered to be misplaced inOcimeae subtribePlectranthinae and apparently is more closely related to subtribeHyptidinae. The disjunct genusRabdosiella is compared to these two genera and regarded to be polyphyletic. The AfricanR. calycina (Benth.)Codd is returned toPlectranthus and calledP. calycinus Benth., while the AsianR. ternifolia (D. Don)Codd is placed inIsodon sect.Pyramidium and calledI. ternifolius (D. Don)Kudo.  相似文献   

20.
Four aryl-phospho--d-glucosidases were identified in Bacillus subtilis by using 4-methylumbelliferyl-phospho--d-glucopyranoside as a substrate. Two of these enzymes are the products of the bglA and bglH genes, previously suggested to encode aryl-phospho--d-glucosidases, while the other enzymes are encoded by the yckE and ydhP genes. Together, these four genes account for >99.9% of the glucosidase activity in B. subtilis on aryl-phospho--d-glucosides. yckE was expressed at a low and constant level during growth, sporulation, and spore germination, and was not induced by aryl--d-glucosides. ydhP was also not induced by aryl--d-glucosides. However, while ydhP was expressed at only a very low level in exponential-phase cells and germinating spores, this gene was expressed at a higher levels upon entry into the stationary phase of growth. Strains lacking yckE or ydhP exhibited no defects in growth, sporulation, or spore germination or in growth on aryl--d-glucosides. However, a strain lacking bglA, bglH and yckE grew poorly if at all on aryl--d-glucosides as the sole carbon source.Abbreviations MU 4-Methylumbelliferone - MUG 4-Methylumbelliferyl--d-glucopyranoside - MUGal 4-Methylumbelliferyl--d-galactopyranoside - MUG-P 4-Methylumbelliferyl--d-glucopyranoside-6-phosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号