首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
N Yokoyama  W T Miller 《FEBS letters》1999,456(3):403-408
To study the role of the catalytic domain in v-Src substrate specificity, we engineered three site-directed mutants (Leu-472 to Tyr or Trp and Thr-429 to Met). The mutant forms of Src were expressed in Sf9 cells and purified. We analyzed the substrate specificities of wild-type v-Src and the mutants using two series of peptides that varied at residues C-terminal to tyrosine. The peptides contained either the YMTM motif found in insulin receptor substrate-1 (IRS-1) or the YGEF motif identified from peptide library experiments to be the optimal sequence for Src. Mutations at positions Leu-472 or Thr-429 caused changes in substrate specificity at positions P+1 and P+3 (i.e. one or three residues C-terminal to tyrosine). This was particularly evident in the case of the L-472W mutant, which had pronounced alterations in its preferences at the P+1 position. The results suggest that residue Leu-472 plays a role in P+1 substrate recognition by Src. We discuss the results in the light of recent work on the roles of the SH2, SH3 and catalytic domains of Src in substrate specificity.  相似文献   

3.
4.
5.
The basis of specificity between pore-forming colicins and immunity proteins was explored by interchanging residues between colicins E1 (ColE1) and 10 (Col10) and testing for altered recognition by their respective immunity proteins, Imm and Cti. A total of 34 divergent residues in the pore-forming domain of ColE1 between residues 419 and 501, a region previously shown to contain the specificity determinants for Imm, were mutagenized to the corresponding Col10 sequences. The residue changes most effective in converting ColE1 to the Col10 phenotype are residue 448 at the N terminus of helix VI and residues 470, 472, and 474 at the C terminus of helix VII. Mutagenesis of helix VI residues 416 to 419 in Col10 to the corresponding ColE1 sequence resulted in increased recognition by Imm and loss of recognition by Cti.  相似文献   

6.
7.
DNA supercoiling by DNA gyrase involves the cleavage of a DNA helix, the passage of another helix through the break, and the religation of the first helix. The cleavage-religation reaction involves the formation of a 5'-phosphotyrosine intermediate with the GyrA subunit of the gyrase (A(2)B(2)) complex. We report the characterization of mutations near the active-site tyrosine residue in GyrA predicted to affect the cleavage-religation reaction of gyrase. We find that mutations at Arg32, Arg47, His78 and His80 inhibit DNA supercoiling and other reactions of gyrase. These effects are caused by the involvement of these residues in the DNA cleavage reaction; religation is largely unaffected by these mutations. We show that these residues cooperate with the active-site tyrosine residue on the opposite subunit of the GyrA dimer during the cleavage-religation reaction.  相似文献   

8.
It is postulated that basic residues in the regulatory region of myosin light chain kinase are important for conferring autoinhibition by binding to the catalytic core. To investigate this proposal, 10 basic amino acids within the regulatory region of rabbit smooth muscle myosin light chain kinase (Lys961-Lys979) were replaced either singularly or in combination with acidic or nonpolar residues by site-directed mutagenesis. All active mutant kinases were dependent on Ca2+/calmodulin for catalytic activity. None of the mutants was active in the absence of Ca2+/calmodulin, suggesting that the autoinhibitory region has not been defined completely. Charge reversal mutants at Arg974, Arg975, and Lys976 resulted in loss of high affinity binding of calmodulin and increased the concentration of calmodulin required for half-maximal activation (KCaM). The charge reversal mutant at Lys979 also increased KCaM but to a lesser extent. Charge reversal mutants at Lys965 and Arg967 resulted in an inactive myosin light chain kinase that could not be proteolytically activated. When these residues were mutated to Ala, the expressed kinase was dependent upon Ca2+/calmodulin for activity and exhibited a decrease in KCaM. Charge reversal mutants in Lys961 and Lys962 also had decreased KCaM values. These basic residues amino-terminal of the calmodulin binding domain may play an important role in the activation of the kinase.  相似文献   

9.
Multidrurg resistance-associated protein 2 (MRP2)/canalicular multispecific organic anion transporter (cMOAT) is involved in the ATP-dependent export of organic anions across the bile canalicular membrane. To identify functional amino acid residues that play essential roles in the substrate transport, each of 13 basic residues around transmembrane regions (TMs) 6-17 were replaced with alanine. Wild type and mutant proteins were expressed in COS-7 cells, and the transport activity was measured as the excretion of glutathione-methylfluorescein. Four mutants, K324A (TM6), K483A (TM9), R1210A (TM16), and R1257A (TM17), showed decreased transport activity, and another mutant, K578A (TM11), showed decreased protein expression. These five mutants were normally delivered to the cell surface similar to the other fully active mutants and wild type MRP2. The importance of TM6, TM16, and TM17 in the transport function of MRP2 is consistent with the previous observation indicating the importance of the corresponding TM1, TM11, and TM12 on P-glycoprotein (Loo, T. W., and Clarke, D. M. (1999) J. Biol. Chem. 274, 35388-35392). Another observation that MRP2 inhibitor, cyclosporine A, failed to inhibit R1230A specifically, indicated the existence of its binding site within TM16.  相似文献   

10.
HLA class 11 molecules were isolated from mouse L cells transfected with a DR gene and an allele, 52a, of locus DR III from an HLA-homozygous cell line, AVL, of the DR3 haplotype. The isolated molecules were found to possess a new allospecificity, named TR81. This specificity behaved allelic to the previously described DR III locus. The TR81 specificity was also present on the DR I gene product of the DR3 haplotype. The nucleotide sequence of the gene encoding TR81 differs from TR81-negative DR genes of the DRw52 family in only two codons, both located in the regions known to be involved in a gene conversion event. Consequently, the following conclusions can be formulated. (a) TR81 is a bi-locus specificity and allelic to TR22 only in its DR III locus localization. (b) The TR81 specificity is the phenotypic counterpart of the gene conversion event which led to the generation of the DR I gene of the DR3 haplotype. (c) One or both individual amino acid substitutions in the first domain of the DR chain are responsible for the TR81 allospecificity. (d) Since TR81 is expressed on the DR I chain of the DR3 haplotype, it is possible that TR81 and DR3 represent the same serological specificity.  相似文献   

11.
12.
13.
Basic region leucine zipper (bZip) proteins contain a bipartite DNA-binding motif consisting of a coiled-coil leucine zipper dimerization domain and a highly charged basic region that directly contacts DNA. The basic region is largely unfolded in the absence of DNA, but adopts a helical conformation upon DNA binding. Although a coil --> helix transition is entropically unfavorable, this conformational change positions the DNA-binding residues appropriately for sequence-specific interactions with DNA. The N-terminal residues of the GCN4 DNA-binding domain, DPAAL, make no DNA contacts and are not part of the conserved basic region, but are nonetheless important for DNA binding. Asp and Pro are often found at the N-termini of alpha-helices, and such N-capping motifs can stabilize alpha-helical structure. In the present study, we investigate whether these two residues serve to stabilize a helical conformation in the GCN4 basic region, lowering the energetic cost for DNA binding. Our results suggest that the presence of these residues contributes significantly to helical structure and to the DNA-binding ability of the basic region in the absence of the leucine zipper. Similar helix-capping motifs are found in approximately half of all bZip domains, and the implications of these findings for in vivo protein function are discussed.  相似文献   

14.
The 5-methyl group of thymidine residues protrudes into the major groove of double helical DNA. The structural influence of this exocyclic substituent has been examined using a PCR-made 160 bp fragment in which thymidine residues were replaced with uridine residues. We show that the dT-->dU substitution and the consequent deletion of the methyl group affects the cleavage of DNA by deoxyribonuclease I and micrococcal nuclease. Analysis of the DNase I cleavage sites, in terms of di and trinucleotides, indicates that homopolymeric tracts of d(AT) become significantly more susceptible to DNase I cleavage when uridine is substituted for thymidine residues. The results indicate that removal of the thymidine methyl groups from the major groove at AT tracts induces structural perturbations that transmit into the opposite minor groove, where they can be detected by endonuclease probing. In contrast, DNase I footprinting experiments with different mono and bis-intercalating drugs reveal that dT-->dU substitution does not markedly affect sequence-specific drug-DNA recognition in the minor or major groove of the double helix. The consequences of demethylation of thymidine residues are discussed in terms of changes in the minor groove width connected to variations in the flexibility of DNA and the intrinsic curvature associated with AT tracts. The study identifies the methyl group of thymine as an important molecular determinant controlling the width of the minor groove and/or the flexibility of the DNA.  相似文献   

15.
The minimum region required for replication of the broad-host-range Thiobacillus ferrooxidans plasmid pTF-FC2 in Escherichia coli was shown to be contained on a 2.05-kilobase fragment of DNA. A 184-base-pair fragment that was required in cis for plasmid replication was identified. This region was also involved in plasmid incompatibility. Nucleotide sequencing of this region revealed three perfectly conserved 22-base-pair tandemly repeated sequences. A comparison of this region with the equivalent region of the broad-host-range plasmid R1162 showed that the repeated sequences had 60% nucleotide homology. The 106-base-pair region immediately adjacent to the repeated sequences was 75% homologous. These plasmids were compatible.  相似文献   

16.
17.
The psoralen derivative 4,5',8-trimethylpsoralen was covalently linked to the 5'-terminus of an 18mer oligodeoxyribonucleotide in the course of solid phase synthesis using phosphoroamidite chemistry. The derivative was introduced as a phosphitylation compound in the last cycle of the oligomer synthesis. The reagent was prepared by 4'-chloromethylation of 4,5',8-trimethylpsoralen, introduction of a linker by ethanediol and phosphitylation with chloro-[(beta-cyanoethoxy)-N,N-diisopropylamino]-phosphine. After oxydation and deprotection the 5'-psoralen modified oligodeoxyribonucleotide was characterised by HPLC. Hybridisation of the psoralen-modified oligomer to a complementary single stranded 21mer followed by irradiation at 350 nm revealed a photo-cross-linked double-stranded DNA fragment analysed on denaturing polyacrylamide gels. The cross-link could be reversed upon irradiation at 254nm.  相似文献   

18.
Manithody C  Yang L  Rezaie AR 《Biochemistry》2012,51(12):2551-2557
Recent results have indicated that factor Xa (FXa) cleaves protease-activated receptor 2 (PAR-2) to elicit protective intracellular signaling responses in endothelial cells. In this study, we investigated the molecular determinants of the specificity of FXa interaction with PAR-2 by monitoring the cleavage of PAR-2 by FXa in endothelial cells transiently transfected with a PAR-2 cleavage reporter construct in which the extracellular domain of the receptor was fused to cDNA encoding for alkaline phosphatase. Comparison of the cleavage efficiency of PAR-2 by a series of FXa mutants containing mutations in different surface loops indicated that the acidic residues of 39-loop (Glu-36, Glu-37, and Glu-39) and the basic residues of 60-loop (Lys-62 and Arg-63), 148-loop (Arg-143, Arg-150, and Arg-154), and 162-helix (Arg-165 and Lys-169) contribute to the specificity of receptor recognition by FXa on endothelial cells. This was evidenced by significantly reduced activity of mutants toward PAR-2 expressed on transfected cells. The extent of loss in the PAR-2 cleavage activity of FXa mutants correlated with the extent of loss in their PAR-2-dependent intracellular signaling activity. Further characterization of FXa mutants indicated that, with the exception of basic residues of 162-helix, which play a role in the recognition specificity of the prothrombinase complex, none of the surface loop residues under study makes a significant contribution to the activity of FXa in the prothrombinase complex. These results provide new insight into mechanisms through which FXa specifically interacts with its macromolecular substrates in the clotting and signaling pathways.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号